Solveeit Logo

Question

Question: The sum of the given series is \(1 + \dfrac{{{1^3} + {2^3}}}{{1 + 2}} + \dfrac{{{1^3} + {2^3} + {3...

The sum of the given series is
1+13+231+2+13+23+331+2+3+..........+13+23+33+......+1531+2+3+......+1512(1+2+3+......+15)1 + \dfrac{{{1^3} + {2^3}}}{{1 + 2}} + \dfrac{{{1^3} + {2^3} + {3^3}}}{{1 + 2 + 3}} + .......... + \dfrac{{{1^3} + {2^3} + {3^3} + ...... + {{15}^3}}}{{1 + 2 + 3 + ...... + 15}} - \dfrac{1}{2}\left( {1 + 2 + 3 + ...... + 15} \right)
A) 1240
B) 1860
C) 660
D) 620

Explanation

Solution

Hint: Here we bring the given series in summation form and solve them.

Complete step-by-step answer:
The given series is written as
1+13+231+2+13+23+331+2+3+..........+13+23+33+......+1531+2+3+......+1512(1+2+3+......+15)1 + \dfrac{{{1^3} + {2^3}}}{{1 + 2}} + \dfrac{{{1^3} + {2^3} + {3^3}}}{{1 + 2 + 3}} + .......... + \dfrac{{{1^3} + {2^3} + {3^3} + ...... + {{15}^3}}}{{1 + 2 + 3 + ...... + 15}} - \dfrac{1}{2}\left( {1 + 2 + 3 + ...... + 15} \right)
Now it is written as
r=11513+23+33+......+1531+2+3+......+1512r=115r\sum\limits_{r = 1}^{15} {\dfrac{{{1^3} + {2^3} + {3^3} + ...... + {{15}^3}}}{{1 + 2 + 3 + ...... + 15}}} - \dfrac{1}{2}\sum\limits_{r = 1}^{15} r
Now you know
r=1nr2=(n(n+1)2)2{\sum\limits_{r = 1}^n {{r^2} = \left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)} ^2} And r=1nr=(n(n+1)2)\sum\limits_{r = 1}^n {r = \left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}
In this question n=15, so apply this
[r=115(n(n+1)2)(n(n+1)2)2]12[15(16)2]\left[ {{{\sum\limits_{r = 1}^{15} {\dfrac{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}}{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}}} }^2}} \right] - \dfrac{1}{2}\left[ {\dfrac{{15(16)}}{2}} \right]
[r=115(n(n+1)2)]60\left[ {\sum\limits_{r = 1}^{15} {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)} } \right] - 60
Now break the summation
[12r=115n2+12r=115n]60\left[ {\dfrac{1}{2}\sum\limits_{r = 1}^{15} {{n^2} + \dfrac{1}{2}\sum\limits_{r = 1}^{15} n } } \right] - 60
Now you know that r=1nr3=n(n+1)(2n+1)6\sum\limits_{r = 1}^n {{r^3}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}
12[15(16)(31)6]+12[15(16)2]60\Rightarrow \dfrac{1}{2}\left[ {\dfrac{{15(16)(31)}}{6}} \right] + \dfrac{1}{2}\left[ {\dfrac{{15(16)}}{2}} \right] - 60
\Rightarrow 620 + 60 – 60
\Rightarrow620
So option D is correct.

Note: In this type of problem remember the summation formulas it will help you a lot in solving these types of series.