Solveeit Logo

Question

Mathematics Question on Geometric Progression

The sum of the first 10 terms of the series 9 + 99 + 999 + ?., is

A

98(9101)\frac{9}{8} \left(9^{10} - 1\right)

B

1009(1091)\frac{100}{9} \left(10^{9} - 1\right)

C

109110^9 - 1

D

1009(10101)\frac{100}{9} \left(10^{10} - 1\right)

Answer

1009(1091)\frac{100}{9} \left(10^{9} - 1\right)

Explanation

Solution

Let, Sn=9+99+999+n S_{n}=9+99+999+\ldots \ldots n terms
Sn=(101)+(1001)+(10001)+n\Rightarrow S_{n}=(10-1)+(100-1)+(1000-1) +\ldots n terms
Sn=(10+102+103+n\Rightarrow S_{n}=\left(10+10^{2}+10^{3}+\ldots \ldots n\right. terms ))
(1+1+n-( 1 + 1 + \dots \dots n terms ))
Sn=10(10n1)101n\Rightarrow S_{n}=\frac{10\left(10^{n}-1\right)}{10-1}-n
[a+ar+ar2++arn1=a(rn1)r1,r>1]\left[\because a+a r+a r^{2}+\ldots \ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}, r>1\right]
Sn=109(10n1)n\Rightarrow S_{n}=\frac{10}{9}\left(10^{n}-1\right)-n
Put n=10n=10
S10=109(10101)10\Rightarrow S_{10} =\frac{10}{9}\left(10^{10}-1\right)-10
=109(101019)=\frac{10}{9}\left(10^{10}-1-9\right)
=109(101010)=1009(1091)=\frac{10}{9}\left(10^{10}-10\right)=\frac{100}{9}\left(10^{9}-1\right)