Solveeit Logo

Question

Mathematics Question on linear inequalities in one variable

The sum of the common roots of the equations , x3+2x25x+2=0 {{x}^{3}}+2{{x}^{2}}-5x+2=0~ and x3+ x28x+4=0,{{x}^{3}}+\text{ }{{x}^{2}}-8x+4=0, is

A

3-3

B

32\frac{3}{2}

C

172-\frac{\sqrt{17}}{2}

D

172\frac{\sqrt{17}}{2}

Answer

3-3

Explanation

Solution

Given equation are x3+2x25x+2=0{{x}^{3}}+2{{x}^{2}}-5x+2=0 ?(i) and x3+x28x+4=0{{x}^{3}}+{{x}^{2}}-8x+4=0 ..(ii) Now, for finding GCD of the given equations x3+x28x+4)x3+2x25x+2(1{{x}^{3}}+{{x}^{2}}-8x+4){{x}^{3}}+2{{x}^{2}}-5x+2(1 \begin{aligned} & {{x}^{3}}+{{x}^{2}}-8x+4 \\\ & \,\,\,--\,\,\,\,\,\,+\,\,\,\,\,\,\,- \\\ & \\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_ \\\ & {{x}^{2}}+3x-2){{x}^{3}}+{{x}^{2}}-8x+4(x-2 \\\ \end{aligned} \begin{aligned} & {{x}^{2}}+3{{x}^{2}}-2x \\\ & -\,\,\,\,\,-\,\,\,\,\,\,\,\,+ \\\ & \\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_ \\\ & -2{{x}^{2}}-6x+4 \\\ & -2x-6x+4 \\\ & +\,\,\,\,\,\,\,\,\,+\,\,\,\,\,\,\,\,\,- \\\ & \\_\\_\\_\\_\\_\\_\\_\\_\\_\\_ \\\ \end{aligned} Thus, GCD or common root of given equations is x2+3x2=0{{x}^{2}}+3x-2=0 \therefore x=3±(3)24×1×(2)2×1x=\frac{-3\pm \sqrt{{{(3)}^{2}}-4\times 1\times (-2)}}{2\times 1} \Rightarrow x=3±9+82x=\frac{3\pm \sqrt{9+8}}{2} \Rightarrow x=3±172x=\frac{-3\pm \sqrt{17}}{2} \Rightarrow x=3+172,3172x=\frac{-3+\sqrt{17}}{2},\,\,\frac{-3-\sqrt{17}}{2} \therefore Sum of roots =3+172+3172=\frac{-3+\sqrt{17}}{2}+\frac{-3-\sqrt{17}}{2} =62=3=\frac{-6}{2}=-3