Question
Mathematics Question on linear inequalities in one variable
The sum of the common roots of the equations , x3+2x2−5x+2=0 and x3+ x2−8x+4=0, is
−3
23
−217
217
−3
Solution
Given equation are x3+2x2−5x+2=0 ?(i) and x3+x2−8x+4=0 ..(ii) Now, for finding GCD of the given equations x3+x2−8x+4)x3+2x2−5x+2(1 \begin{aligned} & {{x}^{3}}+{{x}^{2}}-8x+4 \\\ & \,\,\,--\,\,\,\,\,\,+\,\,\,\,\,\,\,- \\\ & \\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_ \\\ & {{x}^{2}}+3x-2){{x}^{3}}+{{x}^{2}}-8x+4(x-2 \\\ \end{aligned} \begin{aligned} & {{x}^{2}}+3{{x}^{2}}-2x \\\ & -\,\,\,\,\,-\,\,\,\,\,\,\,\,+ \\\ & \\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_ \\\ & -2{{x}^{2}}-6x+4 \\\ & -2x-6x+4 \\\ & +\,\,\,\,\,\,\,\,\,+\,\,\,\,\,\,\,\,\,- \\\ & \\_\\_\\_\\_\\_\\_\\_\\_\\_\\_ \\\ \end{aligned} Thus, GCD or common root of given equations is x2+3x−2=0 ∴ x=2×1−3±(3)2−4×1×(−2) ⇒ x=23±9+8 ⇒ x=2−3±17 ⇒ x=2−3+17,2−3−17 ∴ Sum of roots =2−3+17+2−3−17 =2−6=−3