Solveeit Logo

Question

Mathematics Question on Binomial theorem

The sum of the coefficients of x2/3x^{2/3} and x2/5x^{-2/5} in the binomial expansion of (x2/3+12x2/5)9\left( x^{2/3} + \frac{1}{2} x^{-2/5} \right)^9 is:

A

214\frac{21}{4}

B

6916\frac{69}{16}

C

6316\frac{63}{16}

D

194\frac{19}{4}

Answer

214\frac{21}{4}

Explanation

Solution

Step 1. General Term of the Expansion:
The general term in the binomial expansion of (x2/3+12x2/5)9\left( x^{2/3} + \frac{1}{2}x^{-2/5} \right)^9 is given by:

Tr+1=(9r)(x2/3)9r(x2/52)rT_{r+1} = \binom{9}{r} \left( x^{2/3} \right)^{9-r} \left( \frac{x^{-2/5}}{2} \right)^r

Simplify the expression:

Tr+1=(9r)(12)rx(62r32r5)T_{r+1} = \binom{9}{r} \left( \frac{1}{2} \right)^r x^{\left( \frac{6 - 2r}{3} - \frac{2r}{5} \right)}

Step 2. For x2/3x^{2/3}:
Set the power of xx equal to 2/32/3:

62r32r5=23\frac{6 - 2r}{3} - \frac{2r}{5} = \frac{2}{3}

Solving this equation gives r=5r = 5.
Substituting r=5r = 5 into the coefficient formula:

Coefficient of x2/3=(95)(12)5\text{Coefficient of } x^{2/3} = \binom{9}{5} \left( \frac{1}{2} \right)^5

Step 3. For x2/5x^{-2/5}:
Set the power of xx equal to 2/5-2/5:

62r32r5=25\frac{6 - 2r}{3} - \frac{2r}{5} = -\frac{2}{5}

Solving this equation gives r=6r = 6.
Substituting r=6r = 6 into the coefficient formula:

Coefficient of x2/5=(96)(12)6\text{Coefficient of } x^{-2/5} = \binom{9}{6} \left( \frac{1}{2} \right)^6

Step 4. Sum of the Coefficients:
Add the two coefficients:

Sum=(95)(12)5+(96)(12)6\text{Sum} = \binom{9}{5} \left( \frac{1}{2} \right)^5 + \binom{9}{6} \left( \frac{1}{2} \right)^6

Simplify:Sum=214 \text{Sum} = \frac{21}{4}