Solveeit Logo

Question

Question: The sum of the coefficients of the first 3 terms in the expansion of \({\left( {x - \dfrac{3}{{{x^2}...

The sum of the coefficients of the first 3 terms in the expansion of (x3x2)m,x0,mN{\left( {x - \dfrac{3}{{{x^2}}}} \right)^m},x \ne 0,m \in N is 559. Find the terms of the expansion containing x3{x^3}.

Explanation

Solution

From the expansion of (a+b)n{\left( {a + b} \right)^n}we get the general term to be Tr+1=nCranrbr{T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}and from the given expansion we get the general term to be Tr+1=mCrxmr(3x2)r{T_{r + 1}} = {}^m{C_r}{x^{m - r}}{\left( { - \dfrac{3}{{{x^2}}}} \right)^r}and using this we can find the coefficients of the first three terms and equating their sum to 559 we get a quadratic equation and using the quadratic formula b±b24ac2a\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}we get the value of m and using that in the general formula and equating the power of x to 3 we get the value of r . Hence using these we get the term containing x3{x^3}

Complete step-by-step answer:
We are given that the sum of the coefficients of the first 3 terms in the expansion of (x3x2)m,x0,mN{\left( {x - \dfrac{3}{{{x^2}}}} \right)^m},x \ne 0,m \in N is 559
From the expansion of (a+b)n{\left( {a + b} \right)^n} we get the general term to be
Tr+1=nCranrbr\Rightarrow {T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}
Using this we get the general term of the expansion (x3x2)m,x0,mN{\left( {x - \dfrac{3}{{{x^2}}}} \right)^m},x \ne 0,m \in N
Here a=x,b=3x2,n=ma = x,b = \dfrac{{ - 3}}{{{x^2}}},n = m
Therefore the general term is
Tr+1=mCrxmr(3x2)r\Rightarrow {T_{r + 1}} = {}^m{C_r}{x^{m - r}}{\left( { - \dfrac{3}{{{x^2}}}} \right)^r}
Now the first three terms are T1,T2,T3{T_1},{T_2},{T_3}
So let's find the values of the first three terms using the general term formula
T1=mC0xm0(3x2)0 T1=xm  \Rightarrow {T_1} = {}^m{C_0}{x^{m - 0}}{\left( { - \dfrac{3}{{{x^2}}}} \right)^0} \\\ \Rightarrow {T_1} = {x^m} \\\
T2=mC1xm1(3x2)1 T2=mxm1(3x2) T2=3mxm3  \Rightarrow {T_2} = {}^m{C_1}{x^{m - 1}}{\left( { - \dfrac{3}{{{x^2}}}} \right)^1} \\\ \Rightarrow {T_2} = m{x^{m - 1}}\left( { - \dfrac{3}{{{x^2}}}} \right) \\\ \Rightarrow {T_2} = - 3m{x^{m - 3}} \\\
T3=mC2xm2(3x2)2 T3=m(m1)2xm2(32x4) T3=32m(m1)2xm6  \Rightarrow {T_3} = {}^m{C_2}{x^{m - 2}}{\left( { - \dfrac{3}{{{x^2}}}} \right)^2} \\\ \Rightarrow {T_3} = \dfrac{{m(m - 1)}}{2}{x^{m - 2}}\left( { - \dfrac{{{3^2}}}{{{x^4}}}} \right) \\\ \Rightarrow {T_3} = - {3^2}*\dfrac{{m(m - 1)}}{2}{x^{m - 6}} \\\
Since we are given that the sum of the coefficients of the first three terms are 559
1+(3m)+(32m(m1)2)=559 13m+(9m(m1)2)=559 13m+(9m29m2)=559 26m+9m29m2=559 215m+9m2=1118 9m215m+21118=0 9m215m1116=0  \Rightarrow 1 + \left( { - 3m} \right) + \left( {{3^2}*\dfrac{{m\left( {m - 1} \right)}}{2}} \right) = 559 \\\ \Rightarrow 1 - 3m + \left( {\dfrac{{9m\left( {m - 1} \right)}}{2}} \right) = 559 \\\ \Rightarrow 1 - 3m + \left( {\dfrac{{9{m^2} - 9m}}{2}} \right) = 559 \\\ \Rightarrow \dfrac{{2 - 6m + 9{m^2} - 9m}}{2} = 559 \\\ \Rightarrow 2 - 15m + 9{m^2} = 1118 \\\ \Rightarrow 9{m^2} - 15m + 2 - 1118 = 0 \\\ \Rightarrow 9{m^2} - 15m - 1116 = 0 \\\
We can use the quadratic formula to find the way of m

b±b24ac2a m=15±1524(9)(1116)2(9) m=15±225+4017618 m=15±4040118=15±20118 m=3(5±67)18=(5±67)6 m=5+676,5676 m=726,626 m=12,313  \Rightarrow \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \\\ \Rightarrow m = \dfrac{{15 \pm \sqrt {{{15}^2} - 4\left( 9 \right)\left( { - 1116} \right)} }}{{2\left( 9 \right)}} \\\ \Rightarrow m = \dfrac{{15 \pm \sqrt {225 + 40176} }}{{18}} \\\ \Rightarrow m = \dfrac{{15 \pm \sqrt {40401} }}{{18}} = \dfrac{{15 \pm 201}}{{18}} \\\ \Rightarrow m = \dfrac{{3\left( {5 \pm 67} \right)}}{{18}} = \dfrac{{\left( {5 \pm 67} \right)}}{6} \\\ \Rightarrow m = \dfrac{{5 + 67}}{6},\dfrac{{5 - 67}}{6} \\\ \Rightarrow m = \dfrac{{72}}{6},\dfrac{{ - 62}}{6} \\\ \Rightarrow m = 12,\dfrac{{ - 31}}{3} \\\

Since we are given m belongs to natural numbers m = 12 is accepted
Since we need the term containing x3{x^3}

Tr+1=12Crx12r(3x2)r Tr+1=12Crx12r2r(3)r Tr+1=12Crx123r(3)r  \Rightarrow {T_{r + 1}} = {}^{12}{C_r}{x^{12 - r}}{\left( { - \dfrac{3}{{{x^2}}}} \right)^r} \\\ \Rightarrow {T_{r + 1}} = {}^{12}{C_r}{x^{12 - r - 2r}}{\left( { - 3} \right)^r} \\\ \Rightarrow {T_{r + 1}} = {}^{12}{C_r}{x^{12 - 3r}}{\left( { - 3} \right)^r} \\\

Since we need to find the term containing x3{x^3} let's find the value of r first
x123r=x3 123r=3 123=3r 9=3r r=93=3  \Rightarrow {x^{12 - 3r}} = {x^3} \\\ \Rightarrow 12 - 3r = 3 \\\ \Rightarrow 12 - 3 = 3r \\\ \Rightarrow 9 = 3r \\\ \Rightarrow r = \dfrac{9}{3} = 3 \\\
Now using this in the general formula we get

T3+1=12C3x123(3x2)3 T4=121110123x9(33x6) T4=21110x3(27) T4=5940x3  \Rightarrow {T_{3 + 1}} = {}^{12}{C_3}{x^{12 - 3}}{\left( { - \dfrac{3}{{{x^2}}}} \right)^3} \\\ \Rightarrow {T_4} = \dfrac{{12*11*10}}{{1*2*3}}{x^9}\left( { - \dfrac{{{3^3}}}{{{x^6}}}} \right) \\\ \Rightarrow {T_4} = 2*11*10*{x^3}\left( { - 27} \right) \\\ \Rightarrow {T_4} = - 5940{x^3} \\\

Hence we obtained the term containing x3{x^3}.

Note: There are n+1 terms in the expansion of (x+y)n{(x + y)^n}
The degree of each term is n
The powers on x begin with n and decrease to 0
The powers on y begin with 0 and increase to n
The coefficients are symmetric