Solveeit Logo

Question

Mathematics Question on Maxima and Minima

The sum of the absolute minimum and the absolute maximum values of the function ƒ(x) = |3x - x2 + 2| - x in the interval [-1, 2] is

A

17+32\frac{\sqrt17+3}{2}

B

17+52\frac{\sqrt{17}+5}{2}

C

5

D

9172\frac{9-\sqrt{17}}{2}

Answer

17+32\frac{\sqrt17+3}{2}

Explanation

Solution

The correct answer is (A) : 17+32\frac{\sqrt17+3}{2}
ƒ(x) = |x2– 3x – 2| – x
x[1,2]∀x∈[−1,2]
f(x)={x24x2if 1x<3172 x2+2x+2if 3172x2f(x) = \begin{cases} x^2 - 4x - 2 & \text{if } -1 \leq x < \frac{3 - \sqrt{17}}{2} \\\ -x^2 + 2x + 2 & \text{if } \frac{3 - \sqrt{17}}{2} \leq x \leq 2 \end{cases}

Fig.

ƒ(x)max=3ƒ(x)_{max} = 3
ƒ(x)min=ƒ(3172)ƒ(x)_{min}=ƒ(\frac{3−\sqrt{17}}{2})
=1732=\frac{\sqrt{17}-3}{2}