Solveeit Logo

Question

Question: The sum of \[\sum\limits_{k=1}^{100}{\dfrac{k}{{{k}^{4}}+{{k}^{2}}+1}}\] is equal to A) \[\dfrac{...

The sum of k=1100kk4+k2+1\sum\limits_{k=1}^{100}{\dfrac{k}{{{k}^{4}}+{{k}^{2}}+1}} is equal to
A) 495010101\dfrac{4950}{10101}
B) 505010101\dfrac{5050}{10101}
C) 515110101\dfrac{5151}{10101}
D) None of these

Explanation

Solution

In order to solve this question first we will use the property of sigma expansion and find the sum by using polynomial identities and the polynomial formula to simplify the Expression:
x4+x2+1=[(x2+1)+x][(x2+1)x]{{x}^{4}}+{{x}^{2}}+1=[({{x}^{2}}+1)+x][({{x}^{2}}+1)x]
=(x2+1)2(x)2={{({{x}^{2}}+1)}^{2}}{{(x)}^{2}}
=x4+1+2x2x2={{x}^{4}}+1+2{{x}^{2}}{{x}^{2}}
=x4+x2+1={{x}^{4}}+{{x}^{2}}+1
Sigma expansion shows the sum of the series when put the limit of sigma in the expression. Summation of series means we add all the terms of the series that expands with the help of sigma expansion so we can identify the type of series and use the proper formula.

Complete step by step answer:
By using the formula of the polynomial we get,
k4+k2+1=[(k2+1)+k][(k2+1)k]{{k}^{4}}+{{k}^{2}}+1=[({{k}^{2}}+1)+k][({{k}^{2}}+1)k]
Simplify the expression using algebraic identity
=(k2+1)2k2={{({{k}^{2}}+1)}^{2}}{{k}^{2}}
Rewrite the expression after open the square
=k4+1+2k2k2={{k}^{4}}+1+2{{k}^{2}}{{k}^{2}}
Rewrite the expression after simplification
=k4+k2+1={{k}^{4}}+{{k}^{2}}+1
We can also write the expression in the form
k2+k+1k2+k1=2k (1){{k}^{2}}+k+1{{k}^{2}}+k-1=2k\ \ldots \ldots \left( 1 \right)
Now, from the given expression
k=1100kk4+k2+1\Rightarrow \sum\limits_{k=1}^{100}{\dfrac{k}{{{k}^{4}}+{{k}^{2}}+1}}
Now, Substitute the value of k4+k2+1{{k}^{4}}+{{k}^{2}}+1 in the given expression
k=1100k(k2+1+k)(k2+1k)\Rightarrow \sum\limits_{k=1}^{100}{\dfrac{k}{({{k}^{2}}+1+k)({{k}^{2}}+1k)}}
Rewrite the expression after multiplication and division by 22
12k=11002k(k2+1+k)(k2k1)\Rightarrow \dfrac{1}{2}\sum\limits_{k=1}^{100}{\dfrac{2k}{({{k}^{2}}+1+k)({{k}^{2}}k1)}}
Substitute the value of 2k2k from the equation (1) in the expression
12k=1100(k2+k+1)(k2k+1)(k2+k+1)(k2k+1)\Rightarrow \dfrac{1}{2}\sum\limits_{k=1}^{100}{\dfrac{({{k}^{2}}+k+1)({{k}^{2}}k+1)}{({{k}^{2}}+k+1)({{k}^{2}}k+1)}}
Simplify the expression by dividing the numerator by denominator
\Rightarrow \dfrac{1}{2}\sum\limits_{k=1}^{100}{\left\\{ \dfrac{({{k}^{2}}+k+1)}{({{k}^{2}}+k+1)({{k}^{2}}k+1)}-\dfrac{({{k}^{2}}k+1)}{({{k}^{2}}+k+1)({{k}^{2}}k+1)} \right\\}}
Rewrite the expression after simplification
12k=1100[1k2k+11k2+k+1]\Rightarrow \dfrac{1}{2}\sum\limits_{k=1}^{100}{\left[ \dfrac{1}{{{k}^{2}}k+1}\dfrac{1}{{{k}^{2}}+k+1} \right]}
Put the value of limit and use the sigma expansion
12[1113+13+.........+110101]\Rightarrow \dfrac{1}{2}\left[ \dfrac{1}{1}\dfrac{1}{3}+\dfrac{1}{3}+.........+\dfrac{1}{10101} \right]
Rewrite the expression after simplification
12[1110101]\Rightarrow \dfrac{1}{2}\left[ 1\dfrac{1}{10101} \right]
Again rewrite the expression after simplification
12[10101110101]\Rightarrow \dfrac{1}{2}\left[ \dfrac{10101-1}{10101} \right]
Rewrite the expression after simplification
12[1010010101]\Rightarrow \dfrac{1}{2}\left[ \dfrac{10100}{10101} \right]
Rewrite the expression after simplification
[505010101]\therefore \left[ \dfrac{5050}{10101} \right]

Hence, option (B) is the correct answer.

Note:
Sigma expansion shows the sum of the series when put the limit of sigma in the expansion as
k=1nk=1+2+3 +n\sum\limits_{k=1}^{n}{k}=1+2+3\ \ldots \ldots +n
1+2+3 +n=n(n+1)21+2+3\ \ldots \ldots +n=\dfrac{n\left( n+1 \right)}{2}
We can also solve this problem by direct expansion by using the polynomial concept
x4+x2+1=[(x2+1)+x[(x2+1)x]{{x}^{4}}+{{x}^{2}}+1=[({{x}^{2}}+1)+x[({{x}^{2}}+1)x]
This is the form of polynomial making in the perfect square type.