Solveeit Logo

Question

Question: The sum of series ![](https://cdn.pureessence.tech/canvas_669.png?top_left_x=300&top_left_y=1138&wid...

The sum of series (2k2+k2+k4)\left( \frac { 2 k } { 2 + k ^ { 2 } + k ^ { 4 } } \right)

A

tan–1 (n2 + n + 1)

B

π4\frac { \pi } { 4 }– tan–1 (n2 – n + 1)

C

π4\frac { \pi } { 4 } + cot–1 (n2 + n + 1)

D

None of these

Answer

π4\frac { \pi } { 4 } + cot–1 (n2 + n + 1)

Explanation

Solution

= k=1n[tan1(k2+k+1)tan1(k2k+1)]\sum _ { \mathrm { k } = 1 } ^ { \mathrm { n } } \left[ \tan ^ { - 1 } \left( \mathrm { k } ^ { 2 } + \mathrm { k } + 1 \right) - \tan ^ { - 1 } \left( \mathrm { k } ^ { 2 } - \mathrm { k } + 1 \right) \right]= (tan–1 3 – tan–11) + (tan–1 7 – tan–1 3) + (tan–1 13 – tan–1 7) +…..

+ [tan–1 (n2 + n + 1) – tan–1(n2 – n + 1)]

= tan–1 (n2 + n + 1) – tan–1(1)

= tan–1(n2 + n + 1) – p/4

= π2\frac { \pi } { 2 }– cot–1 (n2 + n + 1) – π4\frac { \pi } { 4 } = π4\frac { \pi } { 4 } – cot–1(n2 + n + 1)