Solveeit Logo

Question

Question: The sum of series \(\frac{1}{2!}\)+\(\frac{1}{4!}\)+\(\frac{1}{6!}\)+….. is –...

The sum of series 12!\frac{1}{2!}+14!\frac{1}{4!}+16!\frac{1}{6!}+….. is –

A

(e21)2\frac{(e^{2} - 1)}{2}

B

(e1)22e\frac{(e - 1)^{2}}{2e}

C

(e21)2e\frac{(e^{2} - 1)}{2e}

D

(e22)e\frac{(e^{2} - 2)}{e}

Answer

(e1)22e\frac{(e - 1)^{2}}{2e}

Explanation

Solution

We know that

e = 1 + 11!\frac{1}{1!}+12!\frac{1}{2!}+13!\frac{1}{3!}+14!\frac{1}{4!}+…. …(i)

e–1 = 1 – 11!\frac{1}{1!}+12!\frac{1}{2!}13!\frac{1}{3!}+14!\frac{1}{4!}–…. …(ii)

On adding Equation (i) and (ii), we get

e + e–1 = 2 + 22!\frac{2}{2!} + 24!\frac{2}{4!}+….

e2+1e\frac{e^{2} + 1}{e}– 2 = 22!\frac{2}{2!}+ 24!\frac{2}{4!}+….

e2+12ee\frac{e^{2} + 1 - 2e}{e}= 2 [12!+14!+....]\left\lbrack \frac{1}{2!} + \frac{1}{4!} + ....\infty \right\rbrack

(e1)22e\frac{(e - 1)^{2}}{2e}=12!\frac{1}{2!}+14!\frac{1}{4!}+…..