Solveeit Logo

Question

Question: The sum of series \[\dfrac{3}{4\times 8}-\dfrac{3\times 5}{4\times 8\times 12}+\dfrac{3\times 5\time...

The sum of series 34×83×54×8×12+3×5×74×8×12×16........\dfrac{3}{4\times 8}-\dfrac{3\times 5}{4\times 8\times 12}+\dfrac{3\times 5\times 7}{4\times 8\times 12\times 16}-........ is
A) 3234\sqrt{\dfrac{3}{2}}-\dfrac{3}{4}
B) 2334\sqrt{\dfrac{2}{3}}-\dfrac{3}{4}
C) 3214\sqrt{\dfrac{3}{2}}-\dfrac{1}{4}
D) 2314\sqrt{\dfrac{2}{3}}-\dfrac{1}{4}

Explanation

Solution

According to this question infinite series is given that is S=34×83×54×8×12+3×5×74×8×12×16........S=\dfrac{3}{4\times 8}-\dfrac{3\times 5}{4\times 8\times 12}+\dfrac{3\times 5\times 7}{4\times 8\times 12\times 16}-........ to solve such types of problems we have to add 1141-\dfrac{1}{4} on both sides and then apply the formula for series that is (1+x)1=1x+x2x3.......{{(1+x)}^{-1}}=1-x+{{x}^{2}}-{{x}^{3}}....... and solve further such types of problems.

Complete step by step answer:
In the question infinite series is given that is S=34×83×54×8×12+3×5×74×8×12×16........S=\dfrac{3}{4\times 8}-\dfrac{3\times 5}{4\times 8\times 12}+\dfrac{3\times 5\times 7}{4\times 8\times 12\times 16}-........
To simplify this type of series we have to add 1141-\dfrac{1}{4} on both sides
By adding on both side of this equation we get:
114+S=114+34×83×54×8×12+3×5×74×8×12×16........1-\dfrac{1}{4}+S=1-\dfrac{1}{4}+\dfrac{3}{4\times 8}-\dfrac{3\times 5}{4\times 8\times 12}+\dfrac{3\times 5\times 7}{4\times 8\times 12\times 16}-........
This infinite series we have to represent in a standard formula for that we have to simplify it further we get:
34+S=114+34×83×54×8×12+3×5×74×8×12×16........\dfrac{3}{4}+S=1-\dfrac{1}{4}+\dfrac{3}{4\times 8}-\dfrac{3\times 5}{4\times 8\times 12}+\dfrac{3\times 5\times 7}{4\times 8\times 12\times 16}-........
Above infinite series can also be written as
34+S=11×(14)+1×31×2(14)21×3×51×2×3(14)3+1×3×5×71×2×3(14)4........\dfrac{3}{4}+S=1-1\times \left( \dfrac{1}{4} \right)+\dfrac{1\times 3}{1\times 2}{{\left( \dfrac{1}{4} \right)}^{2}}-\dfrac{1\times 3\times 5}{1\times 2\times 3}{{\left( \dfrac{1}{4} \right)}^{3}}+\dfrac{1\times 3\times 5\times 7}{1\times 2\times 3}{{\left( \dfrac{1}{4} \right)}^{4}}-........
To simplify the further equation by considering value such as p=1$$$$q=2$$$$x=\dfrac{1}{2}
Before substituting the value we have to more simplify and separate the term so that substitutions become easier.
34+S=111×(12×2)+1×(1+2)1×2(12×2)21×(1+2)×(1+2(2))1×2×3(12×2)3+........\dfrac{3}{4}+S=1-\dfrac{1}{1}\times \left( \dfrac{1}{2\times 2} \right)+\dfrac{1\times (1+2)}{1\times 2}{{\left( \dfrac{1}{2\times 2} \right)}^{2}}-\dfrac{1\times (1+2)\times (1+2(2))}{1\times 2\times 3}{{\left( \dfrac{1}{2\times 2} \right)}^{3}}+........
Now, you can substitute the value in the above series
34+S=1p1×(xq)+p×(p+q)1×2(xq)2p×(p+q)×(p+2q)1×2×3(xq)3+........\dfrac{3}{4}+S=1-\dfrac{p}{1}\times \left( \dfrac{x}{q} \right)+\dfrac{p\times (p+q)}{1\times 2}{{\left( \dfrac{x}{q} \right)}^{2}}-\dfrac{p\times (p+q)\times (p+2q)}{1\times 2\times 3}{{\left( \dfrac{x}{q} \right)}^{3}}+........
If you carefully observe the series then this type of series will be for (1+x)m{{(1+x)}^{-m}}
(1+x)m=mC0mC1x+mC1x2+........{{(1+x)}^{-m}}{{=}^{m}}{{C}_{0}}{{-}^{m}}{{C}_{1}}x{{+}^{m}}{{C}_{1}}{{x}^{2}}+........ (From binomial distribution)
Apply this type of series in the above equation we get:
34+S=(1+x)pq\dfrac{3}{4}+S={{(1+x)}^{-\dfrac{p}{q}}}
After rearranging the term you will get the value of S
S=(1+x)pq34S={{(1+x)}^{-\dfrac{p}{q}}}-\dfrac{3}{4}
Again substitute the value of p=1p=1,q=2q=2 and x=12x=\dfrac{1}{2} so we get the answer accurately
S=(1+12)1234S={{\left( 1+\dfrac{1}{2} \right)}^{-\dfrac{1}{2}}}-\dfrac{3}{4}
After simplifying this we get:
S=(32)1234S={{\left( \dfrac{3}{2} \right)}^{-\dfrac{1}{2}}}-\dfrac{3}{4}
This equation can also be written as
S=2334S=\sqrt{\dfrac{2}{3}}-\dfrac{3}{4}
Therefore, the sum of the infinite series will be S=2334S=\sqrt{\dfrac{2}{3}}-\dfrac{3}{4}.
So, the correct option is “option (B)”.

Note:
Here, in this particular problem to make the series simpler we have to add 1141-\dfrac{1}{4} on both sides.
Take little care while substituting the value and to avoid confusion always consider like p=1$$$$q=2$$$$x=\dfrac{1}{2} so, that substitution and it’s easy to detect the formula. So, in this way we can solve and the above solution can be preferred for such types of problems.