Solveeit Logo

Question

Question: The sum of real roots of the equation \({{x}^{2}}+5\left| x \right|+6=0\) is A. 5 B. 10 C. -5 ...

The sum of real roots of the equation x2+5x+6=0{{x}^{2}}+5\left| x \right|+6=0 is
A. 5
B. 10
C. -5
D. None of these.

Explanation

Solution

Hint: Solve for cases when x>0 and x0x\le 0 individually and remove extraneous roots(means which does not satisfy two cases). Use property that |x| = x when x>0 and |x| = -x when x0x\le 0. Find the sum of all the real roots found. Alternatively, you can plot the given function and find the points at which the graph of the given function intersects the x-axis.

“Complete step-by-step answer:”
We will solve the above question for two cases.
Case I: x>0
We have |x| = x
x2+5x+6=0\Rightarrow {{x}^{2}}+5x+6=0
Using the quadratic formula which states that for quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 the roots are x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}
Here a = 1, b = 5 and c = 6
Using the quadratic formula, we get
x=5±524(1)(6)2(1) x=5±25242 x=5±12=5±12 x=5+12 or x=512 x=2 or x=3 \begin{aligned} & x=\dfrac{-5\pm \sqrt{{{5}^{2}}-4\left( 1 \right)\left( 6 \right)}}{2\left( 1 \right)} \\\ & \Rightarrow x=\dfrac{-5\pm \sqrt{25-24}}{2} \\\ & \Rightarrow x=\dfrac{-5\pm \sqrt{1}}{2}=\dfrac{-5\pm 1}{2} \\\ & \Rightarrow x=\dfrac{-5+1}{2}\text{ or }x=\dfrac{-5-1}{2} \\\ & \Rightarrow x=-2\text{ or }x=-3 \\\ \end{aligned}
Since x>0 both x = -2 and x = -3 are extraneous roots.
Case II: x0x\le 0
We have |x| = -x
x25x+6=0\Rightarrow {{x}^{2}}-5x+6=0
Here a = 1, b = -5 and c = 6
Using the quadratic formula, we get
x=(5)±(5)24(1)(6)2(1) x=5±25242 x=5±12=5±12 x=5+12 or x=512 x=3 or x=2 \begin{aligned} & x=\dfrac{-\left( -5 \right)\pm \sqrt{{{\left( -5 \right)}^{2}}-4\left( 1 \right)\left( 6 \right)}}{2\left( 1 \right)} \\\ & \Rightarrow x=\dfrac{5\pm \sqrt{25-24}}{2} \\\ & \Rightarrow x=\dfrac{5\pm \sqrt{1}}{2}=\dfrac{5\pm 1}{2} \\\ & \Rightarrow x=\dfrac{5+1}{2}\text{ or }x=\dfrac{5-1}{2} \\\ & \Rightarrow x=3\text{ or }x=2 \\\ \end{aligned}
Since x0x\le 0, both x = 3 and x =2 are extraneous roots.
Hence the given equation has no real roots
Hence option D is correct.

Note: Alternative solution:
If we know the graph of f(x) then the graph of f(|x|) is the same as the graph f(x) for x>0 and for x0x\le 0 the graph is the mirror image taken in the y-axis.
Let f(x)=x2+5x+6f(x)={{x}^{2}}+5x+6
Then f(x)=x2+5x+6f\left( \left| x \right| \right)={{x}^{2}}+5\left| x \right|+6
First, we draw the graph of f(x)

Then using the above-mentioned fact, we draw the graph of f(|x|)

As is evident from the graph, the function f(|x|) does not have any root because it does not intersect the x-axis.
Hence the given equation x2+5x+6=0{{x}^{2}}+5\left| x \right|+6=0 has no real roots.