Solveeit Logo

Question

Question: The sum of n terms of two series in A.P. are in the ratio 5n +4 : 9n + 6. Find the ratio of their 13...

The sum of n terms of two series in A.P. are in the ratio 5n +4 : 9n + 6. Find the ratio of their 13th terms.

A

129131\frac{129}{131}

B

127132\frac{127}{132}

C

125134\frac{125}{134}

D

121139\frac{121}{139}

Answer

129131\frac{129}{131}

Explanation

Solution

Let a1,a2a_{1},a_{2} be the first terms of two A.P.s and d1,d2d_{1},d_{2} are their respective common differences.

n2[2a1+(n1)d1]n2[2a2+(n1)d2]=5n+49n+6\frac{\frac{n}{2}\left\lbrack 2a_{1} + (n - 1)d_{1} \right\rbrack}{\frac{n}{2}\left\lbrack 2a_{2} + (n - 1)d_{2} \right\rbrack} = \frac{5n + 4}{9n + 6}

a1+(n1)2d1a2+(n1)2d2=5n+49n+6\frac{a_{1} + \frac{(n - 1)}{2}d_{1}}{a_{2} + \frac{(n - 1)}{2}d_{2}} = \frac{5n + 4}{9n + 6} .................. (1)

Now the ratio of 13th terms = a1+12d1a2+12d2\frac{a_{1} + 12d_{1}}{a_{2} + 12d_{2}}

⇒ put (n1)2=12\frac{(n - 1)}{2} = 12i.e. n = 25 in equation (1)

a1+12d1a2+12d2=5(25)+49(25)+6=129231\frac{a_{1} + 12d_{1}}{a_{2} + 12d_{2}} = \frac{5(25) + 4}{9(25) + 6} = \frac{129}{231}