Solveeit Logo

Question

Mathematics Question on Arithmetic Progression

The sum of n terms of two arithmetic series are in the ratio 2n+3:6n+52n + 3 : 6n + 5, then the ratio of their 13th terms is

A

53:15553 : 155

B

27:8727 : 87

C

29:8329 : 83

D

31:8931 : 89

Answer

53:15553 : 155

Explanation

Solution

Sum of an A.P. is given by Sn=n2[2a+(n1)d]S_{n}=\frac{n}{2}\left[2a+\left(n-1\right)d\right] where 'a' is the first term and 'd' is the common difference of A.P.A.P. Let Sn1S_{n_1} be the sum of n terms of IstA.P.I^{st}\, A.P. and Sn2S_{n_2} be the sum of n terms of IIndA.P.II^{nd}\,A.P. Given that the sum of n terms of two arithmetic series is in the ratio 2n+3:6n+52n + 3 : 6n + 5 Sn1Sn2=2n+36n+5...(i)\Rightarrow \frac{S_{n_1}}{S_{n_2}}=\frac{2n+3}{6n+5}\,...\left(i\right) Sn1=n2[2a1+(n1)d1]=2n+3\Rightarrow S_{n_1}=\frac{n}{2}\left[2a_{1}+\left(n-1\right)d_{1}\right]=2n+3 and Sn1=n2[2a2+(n1)d2]=6n+5S_{n_1}=\frac{n}{2}\left[2a_{2}+\left(n-1\right)d_{2}\right]=6n+5From E (i) , we get Sn1Sn1=n2[2a1+(n1)d1]n2[2a2+(n1)d2]=2n+36n+5\frac{S_{n_1}}{S_{n_1}}=\frac{\frac{n}{2}\left[2a_{1}+\left(n-1\right)d_{1}\right]}{\frac{n}{2}\left[2a_{2}+\left(n-1\right)d_{2}\right]}=\frac{2n+3}{6n+5} 2a1+(n1)d12a2+(n1)d2=2n+36n+5\Rightarrow \frac{2a_{1}+\left(n-1\right)d_{1}}{2a_{2}+\left(n-1\right)d_{2}}=\frac{2n+3}{6n+5} For a=13,n=2a1=2?131=25a = 13, n = 2a - 1 = 2 ? 13 - 1 = 25 2a1+(251)d12a2+(251)d2=53155a1+12d1a2+12d2=53155\therefore \frac{2a_{1}+\left(25-1\right)d_{1}}{2a_{2}+\left(25-1\right)d_{2}}=\frac{53}{155} \Rightarrow \frac{a_{1}+12d_{1}}{a_{2}+12d_{2}}=\frac{53}{155}