Solveeit Logo

Question

Question: The sum of ‘n’ terms of two arithmetic progressions is in ratio \(5n+4:9n+6\). find the ratio of the...

The sum of ‘n’ terms of two arithmetic progressions is in ratio 5n+4:9n+65n+4:9n+6. find the ratio of their 18th{18}^{\text{th}} terms:

Explanation

Solution

In this problem, we will be using the concept of the sum of an arithmetic progression (A.P). In order to solve this question, we divide the sum of n terms of the two arithmetic progression(A.P) with each other and equate it with 5n+4:9n+65n+4:9n+6.
Now we will try to get the equation in the form of the nth{\text{n}}^{\text{th}} term of an A.P and will find the values for ‘n’. Upon putting that value of ‘n’ in 5n+4:9n+65n+4:9n+6. We can calculate the ratio of the 18th{18}^{\text{th}} term of two given A.P.
Complete step by step solution: As mentioned in the question, there are two arithmetic progressions with different first terms and different common differences.
For the first A⋅P:-
Let the first term of A⋅P be = a, and the common difference be = d;
So, Sum of ‘n’ terms of an A⋅P is;
Sn=n2[2a+(n1)d]{{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]
and the nth term of an A⋅P is;
an=a+(n1)d{{a}_{n}}=a+\left( n-1 \right)d
For the second A⋅P:-
Let the first term of A⋅P. be = A and the common difference be = D;
So, the sum of its ‘n’ terms will be;
Sn=n2[2A+(n1)D]{{S}_{n}}=\dfrac{n}{2}\left[ 2A+\left( n-1 \right)D \right]
And the nth term of an A⋅P is;
An=A+(n1)D{{A}_{n}}=A+\left( n-1 \right)D
It’s given in the question that the ratio of the sum of ‘n’ terms of the two AP is 5n+4: 9n+6;5n+4:\ 9n+6;
n2[2a+(n1)d]n2[2A+(n1)D]=5n+49n+6\Rightarrow \dfrac{\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]}{\dfrac{n}{2}\left[ 2\text{A}+\left( n-1 \right)\text{D} \right]}=\dfrac{5n+4}{9n+6}
[2a+(n1)d][2A+(n1)d]=5n+49n+6\Rightarrow \dfrac{\left[ 2a+\left( n-1 \right)d \right]}{\left[ 2A+\left( n-1 \right)d \right]}=\dfrac{5n+4}{9n+6}
Taking L.H.S;
When we take ‘2’ common in numerator and denominator;
=2[a+(n12)d]2[A+(n12)D]=\dfrac{2\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{2\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}
=[a+(n12)d][A+(n12)D]=\dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}
So, now;
[a+(n12)d][A+(n12)D]=5n+49n+6\dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}=\dfrac{5n+4}{9n+6} (1)
We need to find the ratio of the 18th term of Arithmetic progression:
=18th term of 1st AP18th term of 2nd AP=\dfrac{18\text{th}\ \text{term}\ \text{of}\ \text{1st}\ \text{A}\cdot \text{P}}{18\text{th}\ \text{term}\ \text{of}\ \text{2nd}\ \text{A}\cdot \text{P}}
a18 of 1st APA18 of 2nd AP\dfrac{{{a}_{18}}\ \text{of}\ 1\text{st}\ \text{A}\cdot \text{P}}{{{A}_{18}}\ \text{of}\ 2\text{nd}\ \text{A}\cdot \text{P}}
=a+(181)dA+(181)D=\dfrac{a+\left( 18-1 \right)d}{A+\left( 18-1 \right)D}
=a+17dA+17D=\dfrac{a+17d}{A+17D} (2)
Comparing equation (2) with equation (1); a+17d=a+(n12)da+17d=a+\left( \dfrac{n-1}{2} \right)d
17=n12\Rightarrow 17=\dfrac{n-1}{2}
n1=17×2\Rightarrow n-1=17\times 2
n1=34\Rightarrow n-1=34
n=34+1\Rightarrow n=34+1
n=35\Rightarrow n=35
Now, putting n=35n=35 in equation (1);
[a+(n12)d][A+(n12)D]=5n+49n+6\Rightarrow \dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}=\dfrac{5n+4}{9n+6}
a+(3512)dA+(3512)D=5(35)+49(35)+6\Rightarrow \dfrac{a+\left( \dfrac{35-1}{2} \right)d}{A+\left( \dfrac{35-1}{2} \right)D}=\dfrac{5\left( 35 \right)+4}{9\left( 35 \right)+6}
a+(342)dA+(342)D=175+4315+6\Rightarrow \dfrac{a+\left( \dfrac{34}{2} \right)d}{A+\left( \dfrac{34}{2} \right)D}=\dfrac{175+4}{315+6}
a+17dA+17D=179321\Rightarrow \dfrac{a+17d}{A+17D}=\dfrac{179}{321}
Therefore, 18th term of 1st AP18th term of 2nd AP=179321\dfrac{18\text{th}\ \text{term}\ \text{of}\ 1\text{st}\ \text{A}\cdot \text{P}}{18\text{th}\ \text{term}\ \text{of}\ 2\text{nd}\ \text{A}\cdot \text{P}}=\dfrac{179}{321}
Hence, the ratio of 18th{18}^{\text{th}} term of 1st{1}^{\text{st}} A⋅P and 18th{18}^{\text{th}} term of 2nd{2}^{\text{nd}} A⋅P is 179: 321.

Note: The sum of the ‘n’ terms of any A⋅P is Sn=n2[2a+(n1)d]{{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right] and nth{n}^{\text{th}} term of an A⋅P is an=a+(n1)d{{a}_{n}}=a+\left( n-1 \right)d where ‘a’ is the first term of an A.P and ‘d’ is common difference of an A.P.