Solveeit Logo

Question

Mathematics Question on Sequence and series

The sum of nn terms of the series 312.22+522.32+732.42+.....\frac{3}{{{1}^{2}}{{.2}^{2}}}+\frac{5}{{{2}^{2}}{{.3}^{2}}}+\frac{7}{{{3}^{2}}{{.4}^{2}}}+..... is equal to

A

n22n(n+1)2\frac{{{n}^{2}}-2n}{{{(n+1)}^{2}}}

B

n22(n+1)2\frac{{{n}^{2}}-2}{{{(n+1)}^{2}}}

C

n2+2n(n+1)2\frac{{{n}^{2}}+2n}{{{(n+1)}^{2}}}

D

n2+2(n+1)2\frac{{{n}^{2}}+2}{{{(n+1)}^{2}}}

Answer

n2+2n(n+1)2\frac{{{n}^{2}}+2n}{{{(n+1)}^{2}}}

Explanation

Solution

Let Sn=312.22+522.32+....+(2n+1)n2.(n+1)2{{S}_{n}}=\frac{3}{{{1}^{2}}{{.2}^{2}}}+\frac{5}{{{2}^{2}}{{.3}^{2}}}+....+\frac{(2n+1)}{{{n}^{2}}.{{(n+1)}^{2}}}
=(112122)+(122132)=\left( \frac{1}{{{1}^{2}}}-\frac{1}{{{2}^{2}}} \right)+\left( \frac{1}{{{2}^{2}}}-\frac{1}{{{3}^{2}}} \right)
+......+(1n21(n+1)2)+......+\left( \frac{1}{{{n}^{2}}}-\frac{1}{{{(n+1)}^{2}}} \right)
=111(n+1)2=\frac{1}{1}-\frac{1}{{{(n+1)}^{2}}}
=n2+1+2n1(n+1)2=\frac{{{n}^{2}}+1+2n-1}{{{(n+1)}^{2}}}
=n2+2n(n+1)2=\frac{{{n}^{2}}+2n}{{{(n+1)}^{2}}}