Solveeit Logo

Question

Question: The sum of *n* terms of the following series \(1 + ( 1 + x ) + \left( 1 + x + x ^ { 2 } \right) + ...

The sum of n terms of the following series

1+(1+x)+(1+x+x2)+1 + ( 1 + x ) + \left( 1 + x + x ^ { 2 } \right) + \ldots will be

A

1xn1x\frac { 1 - x ^ { n } } { 1 - x }

B

x(1xn)1x\frac { x \left( 1 - x ^ { n } \right) } { 1 - x }

C

n(1x)x(1xn)(1x)2\frac { n ( 1 - x ) - x \left( 1 - x ^ { n } \right) } { ( 1 - x ) ^ { 2 } }

D

None of these

Answer

n(1x)x(1xn)(1x)2\frac { n ( 1 - x ) - x \left( 1 - x ^ { n } \right) } { ( 1 - x ) ^ { 2 } }

Explanation

Solution

\begin{tabular} { l } S=1+(1+x)+(1+x+x2)+.S = 1 + ( 1 + x ) + \left( 1 + x + x ^ { 2 } \right) + \ldots \ldots .. \ S=1+(1+x)+S = \quad 1 + ( 1 + x ) + \ldots \ldots. \ \hline 0=(1+x+x2+.0 = \left( 1 + x + x ^ { 2 } + \ldots . \right.. to nn terms) Tn- T _ { n } \quad (on subtracting) \end{tabular}

Tn=1xn1xT _ { n } = \frac { 1 - x ^ { n } } { 1 - x }

Sn=n=1nTn=n=1n1xn1xS _ { n } = \sum _ { n = 1 } ^ { n } T _ { n } = \sum _ { n = 1 } ^ { n } \frac { 1 - x ^ { n } } { 1 - x } =11xn=1n111xn=1nxn=11xn11xx(1xn1x)= \frac { 1 } { 1 - x } \sum _ { n = 1 } ^ { n } 1 - \frac { 1 } { 1 - x } \sum _ { n = 1 } ^ { n } x ^ { n } = \frac { 1 } { 1 - x } \cdot n - \frac { 1 } { 1 - x } \cdot x \cdot \left( \frac { 1 - x ^ { n } } { 1 - x } \right)

=n1xx(1xn)(1x)2=n(1x)x(1xn)(1x)2= \frac { n } { 1 - x } - \frac { x \left( 1 - x ^ { n } \right) } { ( 1 - x ) ^ { 2 } } = \frac { n ( 1 - x ) - x \left( 1 - x ^ { n } \right) } { ( 1 - x ) ^ { 2 } }