Solveeit Logo

Question

Question: The sum of n terms in the \({{n}^{th}}\) bracket of the series (1) + (2 + 3 + 4) + (5 + 6 + 7 + 8 + ...

The sum of n terms in the nth{{n}^{th}} bracket of the series (1) + (2 + 3 + 4) + (5 + 6 + 7 + 8 + 9) + …. Is

Explanation

Solution

Now we will first form a series of just the first term of the brackets. Now again we will add 0 to this series and form another series. Now we will subtract the two obtained series to find tn{{t}_{n}} . Now we want to solve an AP. We know that the sum of AP is given by n2[2a+(n1)d]\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right] . Hence we can easily find the value of tn{{t}_{n}} . Now note that tn{{t}_{n}} is the first term of the nth{{n}^{th}} bracket. And the nth{{n}^{th}} bracket will have 2n12n-1 terms. Hence using the sum of AP we can again find the sum of all the terms in the nth{{n}^{th}} bracket.

Complete step by step answer:
Now consider the given series (1) + (2 + 3 + 4) + (5 + 6 + 7 + 8 + 9)
Now we will form a series by considering just the first number of the brackets.
Hence we get 1+2+5+10.....+tn1+2+5+10.....+{{t}_{n}}
Sn=1+2+5+10.....+tn........................(1){{S}_{n}}=1+2+5+10.....+{{t}_{n}}........................\left( 1 \right)
Sn=0+1+2+5+10.....tn1+tn....................(2){{S}_{n}}=0+1+2+5+10.....{{t}_{n-1}}+{{t}_{n}}....................\left( 2 \right)
Now subtracting equation (2) from equation (1) we get.
0=1+1+3+5+7+....(n1)termstn tn=1+(1+3+5+7+....(n1)terms)......................(3) \begin{aligned} & 0=1+1+3+5+7+....\left( n-1 \right)terms-{{t}_{n}} \\\ & \Rightarrow {{t}_{n}}=1+\left( 1+3+5+7+....\left( n-1 \right)terms \right)......................\left( 3 \right) \\\ \end{aligned}
Now consider the series 1 + 3 + 5 + 7 ….. (n-1) terms.
This is an AP with a = 1 and d = 2.
Now we know that sum of n terms AP is given by n2[2a+(n1)d]\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]
Hence sum of n – 1 terms is given by (n1)2[2a+(n11)d]\dfrac{\left( n-1 \right)}{2}\left[ 2a+\left( n-1-1 \right)d \right]
Hence sum of n – 1 terms are (n1)2[2a+(n2)d]\dfrac{\left( n-1 \right)}{2}\left[ 2a+\left( n-2 \right)d \right]
Now we know that a = 1 and d = 2.
Hence we have sum of n – 1 terms are (n1)2[2+(n2)2]\dfrac{\left( n-1 \right)}{2}\left[ 2+\left( n-2 \right)2 \right]
Hence we have 1 + 3 + 5 + 7 ….. (n-1) terms =(n1)2[2n2]=(n1)2=\dfrac{\left( n-1 \right)}{2}\left[ 2n-2 \right]={{\left( n-1 \right)}^{2}}
Now from equation (3) we get,
Hence we get tn=1+1+3+5+7+...(n1)terms=1+(n1)2{{t}_{n}}=1+1+3+5+7+...\left( n-1 \right)terms=1+{{\left( n-1 \right)}^{2}}
tn=1+(n1)2..........................(4){{t}_{n}}=1+{{\left( n-1 \right)}^{2}}..........................\left( 4 \right)
Now we have the first term of nth{{n}^{th}} bracket.
Now we know that in first bracket we have 1 term.
In second bracket we have 3 terms.
And so on in nth{{n}^{th}} bracket we have 2n12n-1 terms.
Hence we have that the nth{{n}^{th}} bracket is an AP with a = 1+(n1)21+{{\left( n-1 \right)}^{2}} d = 1.
So sum of n terms is n2[2a+(n1)d]\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right] .
Hence we have sum of 2n12n-1 is 2n12[2a+(2n11)d]\dfrac{2n-1}{2}\left[ 2a+\left( 2n-1-1 \right)d \right]
Now let us substitute a = 1+(n1)21+{{\left( n-1 \right)}^{2}} and d = 1 in the equation.

& S=\dfrac{2n-1}{2}\left[ 2\left( 1+{{\left( n-1 \right)}^{2}} \right)+\left( 2n-2 \right) \right] \\\ & \Rightarrow S=\left( 2n-1 \right)\left[ \left( 1+{{\left( n-1 \right)}^{2}} \right)+\left( n-1 \right) \right] \\\ & \Rightarrow S=\left( 2n-1 \right)\left[ 1+{{\left( n-1 \right)}^{2}}+n-1 \right] \\\ & \Rightarrow S=\left( 2n-1 \right)\left[ {{\left( n-1 \right)}^{2}}+n \right] \\\ & \Rightarrow S=\left( 2n-1 \right)\left[ {{n}^{2}}+1-2n+n \right] \\\ & \Rightarrow S=\left( 2n-1 \right)\left[ {{n}^{2}}-n+1 \right] \\\ \end{aligned}$$ **So, the correct answer is “$S=\left( 2n-1 \right)\left[ {{n}^{2}}-n+1 \right]$”.** **Note:** Now note that here when we are using the sum of AP our n changes. When we are calculating the sum of 1 + 2 + 3 + 4 + …. (n-1) terms. We substitute n – 1 in place of n. Similarly while finding the sum of 2n – 1 terms we substitute the value of n as 2n – 1.