Solveeit Logo

Question

Question: The sum of ![](https://cdn.pureessence.tech/canvas_419.png?top_left_x=432&top_left_y=300&width=300&h...

The sum of nCrr+2Cr\frac{nC_{r}}{r + 2C_{r}} is -

A

2n+1\frac{2}{n + 1}

B

1n+2\frac{1}{n + 2}

C

2n2\frac{2}{n - 2}

D

2n+2\frac{2}{n + 2}

Answer

2n+2\frac{2}{n + 2}

Explanation

Solution

We have, r=0n(1)r\sum_{r = 0}^{n}{(–1)^{r}} nCrr+2Cr\frac{nC_{r}}{r + 2C_{r}}

= r=0n(1)r\sum _ { \mathrm { r } = 0 } ^ { \mathrm { n } } ( - 1 ) ^ { \mathrm { r } } n!(nr)!r!\frac{n!}{(n - r)!r!}× 2!r!(r+2)!\frac{2!r!}{(r + 2)!}

= 2 r=0n(1)r\sum _ { \mathrm { r } = 0 } ^ { \mathrm { n } } ( - 1 ) ^ { \mathrm { r } } n!(nr)!(r+2)!\frac{n!}{(n - r)!(r + 2)!}

= 2(n+1)(n+2)\frac { 2 } { ( \mathrm { n } + 1 ) ( \mathrm { n } + 2 ) } r=0n(1)r\sum_{r = 0}^{n}{(–1)^{r}}

(n+2)!{(n+2)(r+2)}!(r+2)!\frac{(n + 2)!}{\{(n + 2)–(r + 2)\}!(r + 2)!}

= 2(n+1)(n+2)\frac { 2 } { ( \mathrm { n } + 1 ) ( \mathrm { n } + 2 ) } r=0n(1)r+2n+2Cr+2\sum_{r = 0}^{n}{(–1)^{r + 2}}n + 2C_{r + 2}

= 2(n+1)(n+2)\frac { 2 } { ( \mathrm { n } + 1 ) ( \mathrm { n } + 2 ) } s=2n+2(1)sn+2Cs\sum_{s = 2}^{n + 2}{(–1{)^{s}}^{n + 2}C_{s}}

= 2(n+1)(n+2)\frac { 2 } { ( \mathrm { n } + 1 ) ( \mathrm { n } + 2 ) } [(s=0n+2(1)sn+2Cs)(n+2C0n+2C1)]\left\lbrack \left( \sum_{s = 0}^{n + 2}{(–1{)^{s}}^{n + 2}C_{s}} \right) - \left( n + 2C_{0}–^{n + 2}C_{1} \right) \right\rbrack

= 2n+2\frac{2}{n + 2}.

Hence (4) is correct answer.