Solveeit Logo

Question

Question: The sum of lengths of the hypotenuse and a side of a right angled triangle is given. Show that the a...

The sum of lengths of the hypotenuse and a side of a right angled triangle is given. Show that the area of the triangle is maximum when the angle between them is 6060^\circ ?

Explanation

Solution

Here we will construct a diagram on the basis of given parameters. After that we will find the area of the right angle triangle. Then we will differentiate it with respect to x and find values of maximum value of it. Calculate value of required angle at this value.

Complete step-by-step answer:

According to the question ΔABC\Delta ABC is an right angle triangle, in which BC=x,AC=yBC = x,AC = y
Now we find the value of the side AB by Pythagoras theorem, we get
AC2=AB2+BC2AC^2 = AB^2 + BC^2
Now putting the value of BC and AC we get
x2=y2+AB2{x^2} = {y^2} + A{B^2}
By solving this we get,
AB2=x2y2 AB=x2y2  A{B^2} = {x^2} - {y^2} \\\ AB = \sqrt {{x^2} - {y^2}} \\\
Now apply formula of area of right angle triangle
Area=12×BC×ABArea = \dfrac{1}{2} \times BC \times AB
Now we put the values in the above formula we get,
Area = 12xy2x2\dfrac{1}{2}x\sqrt {{y^2} - {x^2}}
Now we square both sides we get,
Area2=x2(y2x2)4Are{a^2} = \dfrac{{{x^2}({y^2} - {x^2})}}{4}
Now we put y=(kx)y = \left( {k - x} \right), x+y=k(constant)\because x + y = k(cons\tan t) we get
Area2=x2[(kx)2x2]4Are{a^2} = \dfrac{{{x^{^2}}\left[ {{{\left( {k - x} \right)}^2} - {x^2}} \right]}}{4}
Now we solve the above equation we apply the formula as (ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2ab we get
Area2=x2[k2+x22kxx2]4Are{a^2} = \dfrac{{{x^{^2}}\left[ {{k^2} + {x^2} - 2kx - {x^2}} \right]}}{4}
Now simplifying the equation we get
Area2=x2[k22kx]4Are{a^2} = \dfrac{{{x^{^2}}\left[ {{k^2} - 2kx} \right]}}{4}
Now multiply the numerator by x2{x^2} we get
Area2=k2x22kx34Are{a^2} = \dfrac{{{k^2}{x^2} - 2k{x^3}}}{4} (i) \cdot \cdot \cdot \left( i \right)
Now On differentiating(i)\left( i \right), We get
2Area.dAdx=2k2x6kx242Area.\dfrac{{dA}}{{dx}} = \dfrac{{2{k^2}x - 6k{x^2}}}{4} (ii) \cdot \cdot \cdot \left( {ii} \right)
After simplifying the above equation we get
dAdx=k2x3kx24A\dfrac{{dA}}{{dx}} = \dfrac{{{k^2}x - 3k{x^2}}}{{4A}}
Now, as we know that
dAdx=0 we put the value ofdAdx, (k2x3kx2)=0 after simplifying we get x=k3  \Rightarrow \dfrac{{dA}}{{dx}} = 0 \\\ we{\text{ }}put{\text{ }}the{\text{ }}value{\text{ }}of\dfrac{{dA}}{{dx}}, \\\ \Rightarrow \left( {{k^2}x - 3k{x^2}} \right) = 0 \\\ after{\text{ }}simplifying{\text{ }}we{\text{ }}get \\\ \Rightarrow x = \dfrac{k}{3} \\\
Here we are neglecting x=0x = 0
Thus, A is maximum when x=k3x = \dfrac{k}{3}
Now, we put the value of x in the equation y=(kx)y = \left( {k - x} \right) we get
y=(kk3) y=(2k3)  \Rightarrow y = \left( {k - \dfrac{k}{3}} \right) \\\ y = \left( {\dfrac{{2k}}{3}} \right) \\\
Now cosθ=BCAC\cos \theta = \dfrac{{BC}}{{AC}}, putting the value we get
xy=cosθ\therefore \dfrac{x}{y} = \cos \theta
Now we put the value of x, y we get
cosθ=(k3)(2k3) cosθ=12  \Rightarrow \cos \theta = \dfrac{{\left( {\dfrac{k}{3}} \right)}}{{\left( {\dfrac{{2k}}{3}} \right)}} \\\ \Rightarrow \cos \theta = \dfrac{1}{2} \\\
Hence the value of
θ=π3\Rightarrow \theta = \dfrac{\pi }{3}

Hence, the area is maximum when θ=60\theta = 60^\circ

Note: Here we can apply differentiation for finding the value of maxima, because we know that maximum is obtained when differentiation will be negative .So for that we have to find differentiation to make it equal zero and get maximum value.