Question
Mathematics Question on Ellipse
The sum of lengths of major and minor axes- of an ellipse whose eccentricity is 54 and length of latuserectum is 14.4 , is
A
24
B
32
C
64
D
48
Answer
64
Explanation
Solution
Given, eccentricity of an ellipse e=54
⇒ ac=54 [∵c=ae]
⇒ c=54a ..(i) and length of latuserectum a2b2=14.4
⇒ ab2=7.2
⇒ ab2=1072=636
⇒ b2=536a .. (ii) In an ellipse, we know that c2=a2−b2
⇒ (54a)2=a2−536a
⇒ 2516a2=a2−536a [using Eqs. (i) and (ii)]
⇒ 2516a2−25a2=5−36a
⇒ 25−9a2=−536a
⇒ 5a=4
⇒ a=20 Then, from E (ii), we get b2=536×20
⇒ b2=144⇒b=±12
⇒ b=12 [∵b=−12] Hence, sum of major and minor axes
=2(a+b)=2(20+12)=64