Solveeit Logo

Question

Mathematics Question on Ellipse

The sum of lengths of major and minor axes- of an ellipse whose eccentricity is 45\frac{4}{5} and length of latuserectum is 14.414.4 , is

A

2424

B

3232

C

6464

D

4848

Answer

6464

Explanation

Solution

Given, eccentricity of an ellipse e=45e=\frac{4}{5}
\Rightarrow ca=45\frac{c}{a}=\frac{4}{5} [c=ae][\because \,\,c=ae]
\Rightarrow c=4a5c=\frac{4a}{5} ..(i) and length of latuserectum 2b2a=14.4\frac{2{{b}^{2}}}{a}=14.4
\Rightarrow b2a=7.2\frac{{{b}^{2}}}{a}=7.2
\Rightarrow b2a=7210=366\frac{{{b}^{2}}}{a}=\frac{72}{10}=\frac{36}{6}
\Rightarrow b2=36a5{{b}^{2}}=\frac{36\,a}{5} .. (ii) In an ellipse, we know that c2=a2b2{{c}^{2}}={{a}^{2}}-{{b}^{2}}
\Rightarrow (4a5)2=a236a5{{\left( \frac{4a}{5} \right)}^{2}}={{a}^{2}}-\frac{36a}{5}
\Rightarrow 16a225=a236a5\frac{16{{a}^{2}}}{25}={{a}^{2}}-\frac{36a}{5} [using Eqs. (i) and (ii)]
\Rightarrow 16a225a225=36a5\frac{16{{a}^{2}}-25{{a}^{2}}}{25}=\frac{-36a}{5}
\Rightarrow 9a225=36a5\frac{-9{{a}^{2}}}{25}=-\frac{36\,a}{5}
\Rightarrow a5=4\frac{a}{5}=4
\Rightarrow a=20a=20 Then, from E (ii), we get b2=365×20{{b}^{2}}=\frac{36}{5}\times 20
\Rightarrow b2=144b=±12{{b}^{2}}=144\Rightarrow b=\pm 12
\Rightarrow b=12b=12 [b12][\because \,\,b\ne -12] Hence, sum of major and minor axes
=2(a+b)=2(20+12)=64=2(a+b)=2(20+12)=64