Solveeit Logo

Question

Question: The sum of intercepts to the tangents to the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordin...

The sum of intercepts to the tangents to the curve x+y=a\sqrt x + \sqrt y = \sqrt a upon the coordinate axes is
A. 2a2a
B. aa
C. 22a2\sqrt 2 a
D. None of these

Explanation

Solution

Hint: Consider any point on the given curve and find the tangent to the curve at the considered point. Then take out the intercepts to the obtained tangent and add them, which gives the required solution.

Complete step-by-step answer:
Let P(x1,y1)P\left( {{x_1},{y_1}} \right) be a point on the curve x+y=a\sqrt x + \sqrt y = \sqrt a
Then, x1+y1=a.................................(i)\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a .................................\left( i \right)
Now, differentiating the curve x+y=a\sqrt x + \sqrt y = \sqrt a , we have

d(x)dx+d(y)dx=d(a)dx 12x+12ydydx=0 dydx=yx  \Rightarrow \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} + \dfrac{{d\left( {\sqrt y } \right)}}{{dx}} = \dfrac{{d\left( {\sqrt a } \right)}}{{dx}} \\\ \Rightarrow \dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2\sqrt y }}\dfrac{{dy}}{{dx}} = 0 \\\ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }} \\\

So, the slope of the tangent at P(x1,y1)P\left( {{x_1},{y_1}} \right) to the curve x+y=a\sqrt x + \sqrt y = \sqrt a is
(dydx)P=y1x1{\left( {\dfrac{{dy}}{{dx}}} \right)_P} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}
The equation of the tangent at P(x1,y1)P\left( {{x_1},{y_1}} \right) to the curve x+y=a\sqrt x + \sqrt y = \sqrt a is

yy1=(dydx)P(xx1) yy1=y1x1(xx1) (yy1)x1=y1(xx1) yx1y1x1=xy1+x1y1 xy1+yx1=x1y1+y1x1  y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_P}\left( {x - {x_1}} \right) \\\ \Rightarrow y - {y_1} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\left( {x - {x_1}} \right) \\\ \Rightarrow \left( {y - {y_1}} \right)\sqrt {{x_1}} = - \sqrt {{y_1}} \left( {x - {x_1}} \right) \\\ \Rightarrow y\sqrt {{x_1}} - {y_1}\sqrt {{x_1}} = - x\sqrt {{y_1}} + {x_1}\sqrt {{y_1}} \\\ \Rightarrow x\sqrt {{y_1}} + y\sqrt {{x_1}} = {x_1}\sqrt {{y_1}} + {y_1}\sqrt {{x_1}} \\\

Dividing both sides with x1y1\sqrt {{x_1}} \sqrt {{y_1}} we have
xx1+yy1=x1+y1\Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt {{x_1}} + \sqrt {{y_1}}
Since, x1+y1=a\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a

xx1+yy1=a xax1+yay1=1 xax1+yay1=1  \Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt a \\\ \Rightarrow \dfrac{x}{{\sqrt a \sqrt {{x_1}} }} + \dfrac{y}{{\sqrt a \sqrt {{y_1}} }} = 1 \\\ \Rightarrow \dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1 \\\

We know that if xa+yb=1\dfrac{x}{a} + \dfrac{y}{b} = 1 is the equation of the line, then the intercepts upon the coordinate axes is a and ba{\text{ and }}b.
So, the intercepts of the formed tangent xax1+yay1=1\dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1 is ax1 and ay1\sqrt {a{x_1}} {\text{ and }}\sqrt {a{y_1}} .
Therefore, the sum of the intercepts is

ax1+ay1 a(x1+y1)  \Rightarrow \sqrt {a{x_1}} + \sqrt {a{y_1}} \\\ \Rightarrow \sqrt a \left( {\sqrt {{x_1}} + \sqrt {{y_1}} } \right) \\\

Since, we have x1+y1=a\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a

a(a) a  \Rightarrow \sqrt a \left( {\sqrt a } \right) \\\ \Rightarrow a \\\

Therefore, the sum of the intercepts of the curve x+y=a\sqrt x + \sqrt y = \sqrt a upon the coordinate axes is aa.
Thus, the correct option is B. aa

Note: Here the tangent must touch both the coordinate axes to form intercepts. In the given above formula aa is the length of xx axis intercept and bb is the length of yy axis intercept.