Solveeit Logo

Question

Question: The sum of intercepts on co-ordinate axes made by tangent to the curve \(\sqrt{x} + \sqrt{y} = \sqrt...

The sum of intercepts on co-ordinate axes made by tangent to the curve x+y=a\sqrt{x} + \sqrt{y} = \sqrt{a} is

A

a

B

2a

C

2a2\sqrt{a}

D

None of these

Answer

a

Explanation

Solution

x+y=a\sqrt{x} + \sqrt{y} = \sqrt{a}12x+12ydydx=0\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0\therefore dydx=yx\frac{dy}{dx} = - \frac{\sqrt{y}}{\sqrt{x}}

Hence tangent at (x, y) is Yy=yx(Xx)Y - y = - \frac{\sqrt{y}}{\sqrt{x}}(X - x) or

Xy+Yx=xy(x+y)=axyX\sqrt{y} + Y\sqrt{x} = \sqrt{xy}(\sqrt{x} + \sqrt{y}) = \sqrt{axy} or Xax+Yay=1\frac{X}{\sqrt{a}\sqrt{x}} + \frac{Y}{\sqrt{a}\sqrt{y}} = 1

Clearly its intercepts on the axes are ax\sqrt{a}\sqrt{x} and ay\sqrt{a}\sqrt{y}.

Sum of the intercepts = a(x+y)=a.a=a\sqrt{a}(\sqrt{x} + \sqrt{y}) = \sqrt{a}.\sqrt{a} = a.