Solveeit Logo

Question

Question: The sum of infinity of the series \(1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} + ...

The sum of infinity of the series 1+45+752+1053+.....1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} + ..... is
A) 1635\dfrac{{16}}{{35}}
B) 118\dfrac{{11}}{8}
C) 3516\dfrac{{35}}{{16}}
D) 86\dfrac{8}{6}

Explanation

Solution

In order to find the sum of the infinite series, name the series SS, then multiply both the sides by 15\dfrac{1}{5}, and then subtract the new obtained series from the first series taken. Use the concept of infinite geometric progression, solve the terms and get the results/correct option.

Complete step by step solution:
We are given with an infinite series: 1+45+752+1053+.....1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} + .....
Naming the series as sum or SS, so the series is:
S=1+45+752+1053+.....S = 1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} + ..... ……………..(1)
Multiplying both the sides of the equation by 15\dfrac{1}{5}, and we get:
15S=15(1+45+752+1053+.....)\dfrac{1}{5}S = \dfrac{1}{5}\left( {1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} + .....} \right)
Opening the braces on the right side:
15S=15+452+753+1054+.....\dfrac{1}{5}S = \dfrac{1}{5} + \dfrac{4}{{{5^2}}} + \dfrac{7}{{{5^3}}} + \dfrac{{10}}{{{5^4}}} + ..... ……………..(2)
Subtracting (2) from (1), and we get:
S15S=(1+45+752+1053+.....)(15+452+753+1054+.....)S - \dfrac{1}{5}S = \left( {1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} + .....} \right) - \left( {\dfrac{1}{5} + \dfrac{4}{{{5^2}}} + \dfrac{7}{{{5^3}}} + \dfrac{{10}}{{{5^4}}} + .....} \right)
Opening the parenthesis on the right-side and solving it further, and similarly for the left-hand side:

S15S=(1+45+752+1053+.....)(15+452+753+1054+.....) 515S=1+45+752+1053154527531054+......  S - \dfrac{1}{5}S = \left( {1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} + .....} \right) - \left( {\dfrac{1}{5} + \dfrac{4}{{{5^2}}} + \dfrac{7}{{{5^3}}} + \dfrac{{10}}{{{5^4}}} + .....} \right) \\\ \Rightarrow \dfrac{{5 - 1}}{5}S = 1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} - \dfrac{1}{5} - \dfrac{4}{{{5^2}}} - \dfrac{7}{{{5^3}}} - \dfrac{{10}}{{{5^4}}} + ...... \\\

Solving similar types of constants, and we get:

515S=1+45+752+1053154527531054+...... 45S=1+35+352+353+......  \dfrac{{5 - 1}}{5}S = 1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} - \dfrac{1}{5} - \dfrac{4}{{{5^2}}} - \dfrac{7}{{{5^3}}} - \dfrac{{10}}{{{5^4}}} + ...... \\\ \Rightarrow \dfrac{4}{5}S = 1 + \dfrac{3}{5} + \dfrac{3}{{{5^2}}} + \dfrac{3}{{{5^3}}} + ...... \\\

Taking 35\dfrac{3}{5} common from the right-side except the first operand:
45S=1+35(1+15+152+.....)\dfrac{4}{5}S = 1 + \dfrac{3}{5}\left( {1 + \dfrac{1}{5} + \dfrac{1}{{{5^2}}} + .....} \right) ……..(3)
We get another geometric series inside the parenthesis 1+15+152+.....1 + \dfrac{1}{5} + \dfrac{1}{{{5^2}}} + .....
Comparing the above obtained series with the general geometric series that is a,ar,ar2......,arn1,.....a, ar, a{r^2}......,a{r^{n - 1}},....., we get first term a=1a = 1, second term as ar=15ar = \dfrac{1}{5} and so on.
Dividing first term by second term, we get:
secondfirst=ara ara=151 r=151=15  \dfrac{{\sec ond}}{{first}} = \dfrac{{ar}}{a} \\\ \dfrac{{ar}}{a} = \dfrac{{\dfrac{1}{5}}}{1} \\\ r = \dfrac{{\dfrac{1}{5}}}{1} = \dfrac{1}{5} \\\
Since, r=15<1\left| r \right| = \left| {\dfrac{1}{5}} \right| < 1, so we use the formula S=a1r{S_\infty } = \dfrac{a}{{1 - r}}, where aa is the first term and rr is the common ratio and S{S_\infty }is the sum of the infinite series.
Substituting the value’s obtained in the formula S=a1r{S_\infty } = \dfrac{a}{{1 - r}}, and we get:
S=a1r=11(15) S=1115=1515=145=54  {S_\infty } = \dfrac{a}{{1 - r}} = \dfrac{1}{{1 - \left( {\dfrac{1}{5}} \right)}} \\\ {S_\infty } = \dfrac{1}{{1 - \dfrac{1}{5}}} = \dfrac{1}{{\dfrac{{5 - 1}}{5}}} = \dfrac{1}{{\dfrac{4}{5}}} = \dfrac{5}{4} \\\
Substituting this value in (3), we get:
45S=1+35(54)\dfrac{4}{5}S = 1 + \dfrac{3}{5}\left( {\dfrac{5}{4}} \right)
Multiplying the braces value:

45S=1+35(54) 45S=1+1520  \dfrac{4}{5}S = 1 + \dfrac{3}{5}\left( {\dfrac{5}{4}} \right) \\\ \Rightarrow \dfrac{4}{5}S = 1 + \dfrac{{15}}{{20}} \\\

Solving the right-hand side value:

45S=1+1520 45S=20+1520 45S=3520  \dfrac{4}{5}S = 1 + \dfrac{{15}}{{20}} \\\ \Rightarrow \dfrac{4}{5}S = \dfrac{{20 + 15}}{{20}} \\\ \Rightarrow \dfrac{4}{5}S = \dfrac{{35}}{{20}} \\\

Multiplying both the terms by 55 and dividing by 44 in order to get SS:

45S=3520 45S×54=3520×54 S=3516  \Rightarrow \dfrac{4}{5}S = \dfrac{{35}}{{20}} \\\ \Rightarrow \dfrac{4}{5}S \times \dfrac{5}{4} = \dfrac{{35}}{{20}} \times \dfrac{5}{4} \\\ \Rightarrow S = \dfrac{{35}}{{16}} \\\

Which matches with the third option.

Therefore, the sum of infinity of the series 1+45+752+1053+.....1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} + ..... is Option C : 3516\dfrac{{35}}{{16}}.

Additional Information:
A finite series is a series whose last term is known, in other words the number of terms are known to us and is represented by a,ar,ar2......,arna, ar, a{r^2}......,a{r^n}, where aa is the first term and rr is the common ratio.

An infinite geometric series sum is the sum of an infinite geometric sequence. And thus, we know that infinite means not having any last term, so infinite series does not have any last term, and the series is represented by a,ar,ar2......,arn1,.....a, ar, a{r^2}......,a{r^{n - 1}},....., where aa is the first term and rr is the common ratio.

Note:

  1. Always preferred to go step by step in order to reduce the chances of mistakes.
  2. There is a huge difference between infinite and finite geometric series, do not consider them the same.