Solveeit Logo

Question

Question: The sum of infinite series $\frac{1}{15} + \frac{1}{30} + \frac{1}{50} + \frac{1}{75} + ......\inft...

The sum of infinite series

115+130+150+175+......\frac{1}{15} + \frac{1}{30} + \frac{1}{50} + \frac{1}{75} + ......\infty is k20\frac{k}{20}, then the value of k is

Answer

k = 4

Explanation

Solution

Given the series

115+130+150+175+,\frac{1}{15}+\frac{1}{30}+\frac{1}{50}+\frac{1}{75}+\cdots,

we first express the general term. Notice the denominators follow a quadratic pattern. Writing the nnth term as

an=1dn,dn=5n2+15n+102,a_n = \frac{1}{d_n},\quad d_n = \frac{5n^2+15n+10}{2},

we have

an=25n2+15n+10=25(n+1)(n+2).a_n = \frac{2}{5n^2+15n+10} = \frac{2}{5(n+1)(n+2)}.

Thus,

an=251(n+1)(n+2).a_n = \frac{2}{5}\cdot\frac{1}{(n+1)(n+2)}.

Step 1: Partial Fraction Decomposition

Decompose:

1(n+1)(n+2)=1n+11n+2,\frac{1}{(n+1)(n+2)} = \frac{1}{n+1} - \frac{1}{n+2},

so that

an=25(1n+11n+2).a_n = \frac{2}{5}\left(\frac{1}{n+1} - \frac{1}{n+2}\right).

Step 2: Telescoping Series Sum

The sum of the series becomes:

S=25n=1(1n+11n+2).S = \frac{2}{5} \sum_{n=1}^\infty \left(\frac{1}{n+1} - \frac{1}{n+2}\right).

Writing the partial sum SNS_N:

SN=25[(1213)+(1314)++(1N+11N+2)].S_N = \frac{2}{5} \left[\left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots + \left(\frac{1}{N+1} - \frac{1}{N+2}\right)\right].

This telescopes to:

SN=25(121N+2).S_N = \frac{2}{5} \left(\frac{1}{2} - \frac{1}{N+2}\right).

Taking NN \to \infty,

S=2512=15.S = \frac{2}{5}\cdot\frac{1}{2} = \frac{1}{5}.

Given that the sum is also expressed as k20\frac{k}{20}, equate:

15=k20k=4.\frac{1}{5} = \frac{k}{20} \quad\Longrightarrow\quad k = 4.