Solveeit Logo

Question

Question: The sum of \(\frac{2}{1!} + \frac{6}{2!} + \frac{12}{3!} + \frac{20}{4!} +\).......is....

The sum of 21!+62!+123!+204!+\frac{2}{1!} + \frac{6}{2!} + \frac{12}{3!} + \frac{20}{4!} +.......is.

A

3e2\frac{3e}{2}

B

ee

C

2e2e

D

3e3e

Answer

3e3e

Explanation

Solution

Let x4x^{- 4} and let

1- 1

12.3+14.5+16.7+...=\frac{1}{2.3} + \frac{1}{4.5} + \frac{1}{6.7} + ... =

log(2/e)\log(2/e)

log(e/2)\log(e/2)

b=aa22+a33a44+..b = a - \frac{a^{2}}{2} + \frac{a^{3}}{3} - \frac{a^{4}}{4} + ..=b+b22!+b33!+b44!+...=b + \frac{b^{2}}{2!} + \frac{b^{3}}{3!} + \frac{b^{4}}{4!} + ...\infty == logea\log_{e}a

∴ nth term of given series

logeb\log_{e}b or aa

Now, sum = eae^{a}.