Solveeit Logo

Question

Question: The sum of \(\frac{1}{2} + \frac{1}{3}.\frac{1}{2^{3}} + \frac{1}{5}.\frac{1}{2^{5}} + .....\infty\)...

The sum of 12+13.123+15.125+.....\frac{1}{2} + \frac{1}{3}.\frac{1}{2^{3}} + \frac{1}{5}.\frac{1}{2^{5}} + .....\infty is.

A

loge32\log_{e}\sqrt{\frac{3}{2}}

B

loge3\log_{e}\sqrt{3}

C

loge12\log_{e}\sqrt{\frac{1}{2}}

D

loge3\log_{e}3

Answer

loge3\log_{e}\sqrt{3}

Explanation

Solution

Sum of 1ey3\frac{1 - e^{y}}{3}

= (1ey)1/3(1ey)3(1 - e^{y})^{1/3}(1 - e^{y})^{3}

= e2+12e=\frac{e^{2} + 1}{2e} =.