Solveeit Logo

Question

Question: The sum of first twenty terms of the series \(1 + \dfrac{3}{2} + \dfrac{7}{4} + \dfrac{{15}}{8} + \d...

The sum of first twenty terms of the series 1+32+74+158+3116+.......1 + \dfrac{3}{2} + \dfrac{7}{4} + \dfrac{{15}}{8} + \dfrac{{31}}{{16}} + ....... , is
a)38+12020 b)39+12019 c)39+12020 d)38+12019 a)\,38 + \dfrac{1}{{{{20}^{20}}}} \\\ b)\,39 + \dfrac{1}{{{{20}^{19}}}} \\\ c)\,39 + \dfrac{1}{{{{20}^{20}}}} \\\ d)\,38 + \dfrac{1}{{{{20}^{19}}}}

Explanation

Solution

In this question we are given a series and we have to find the sum of the first twenty terms of the series. In order to calculate the sum we will find the nth{n^{th}} term of the given series. And using nth{n^{th}} term we can easily find the sum of the first twenty terms.

Complete step-by-step answer:
We are given a series:
1+32+74+158+3116+.......(1)1 + \dfrac{3}{2} + \dfrac{7}{4} + \dfrac{{15}}{8} + \dfrac{{31}}{{16}} + .......\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \left( 1 \right)
And we have to find the sum of first 2020 terms
To solve the question we will take the series and find its nth{n^{th}} term
So, we can write (1) as,
  1+4121+8122+16123+32124+........\;1 + \dfrac{{4 - 1}}{{{2^1}}} + \dfrac{{8 - 1}}{{{2^2}}} + \dfrac{{16 - 1}}{{{2^3}}} + \dfrac{{32 - 1}}{{{2^4}}} + ........
Because 2=21,4=222 = {2^1},\,4 = {2^2} and so on,
Also, 21120+22121+23122+24123+25124+........(3)\dfrac{{{2^1} - 1}}{{{2^0}}} + \dfrac{{{2^2} - 1}}{{{2^1}}} + \dfrac{{{2^3} - 1}}{{{2^2}}} + \dfrac{{{2^4} - 1}}{{{2^3}}} + \dfrac{{{2^5} - 1}}{{{2^4}}} + ........\,\,\,\,\,\,\,\, \to \left( 3 \right)
So clearly from (3) we can say that nth{n^{th}} term for the series (1) is
Tn=2n2n112n1(4){T_n} = \dfrac{{{2^n}}}{{{2^{n - 1}}}} - \dfrac{1}{{{2^{n - 1}}}}\,\,\,\,\,\,\,\,\,\, \to \left( 4 \right)
According to the question we have to find the sum of first twenty terms
Let S be the sum of the first twenty terms. So,

S=n=120Tn S=n=1202n2n112n1 \Rightarrow S = \sum\limits_{n = 1}^{20} {{T_n}} \\\ \Rightarrow S = \sum\limits_{n = 1}^{20} {\dfrac{{{2^n}}}{{{2^{n - 1}}}} - \dfrac{1}{{{2^{n - 1}}}}\,} \\\

Now, in the expression 2n2n1\dfrac{{{2^n}}}{{{2^{n - 1}}}}, base is same so powers will be subtracted, then

S=n=1202nn+112n1 S=n=120212n1(5) \Rightarrow S = \sum\limits_{n = 1}^{20} {{2^{n - n + 1}} - \dfrac{1}{{{2^{n - 1}}}}\,} \\\ \Rightarrow S = \sum\limits_{n = 1}^{20} {2 - \dfrac{1}{{{2^{n - 1}}}}\,} \,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \left( 5 \right) \\\

Now we know that i=1nai+bi=i=1nai+i=1nbi\sum\limits_{i = 1}^n {{a_i} + {b_i}} = \sum\limits_{i = 1}^n {{a_i}} + \sum\limits_{i = 1}^n {{b_i}}
So using this in (5) where ai=2,bi=12n1{a_i} = 2\,\,\,,\,\,\,{b_i} = \dfrac{1}{{{2^{n - 1}}}}
So
S=n=1202n=12012n1S = \sum\limits_{n = 1}^{20} {2\,} - \sum\limits_{n = 1}^{20} {\dfrac{1}{{{2^{n - 1}}}}\,}
Now we know that n=1ma=am\sum\limits_{n = 1}^m a = am where aa is any constant, so using it here in first summation where a=2a = 2 and m=20m = 20, we get
S=2(20)n=12012n1(6)S = 2(20) - \sum\limits_{n = 1}^{20} {\dfrac{1}{{{2^{n - 1}}}}\,} \,\,\,\,\,\,\,\,\,\,\,\,\, \to \left( 6 \right)
Now consider
n=12012n1=120+121+122+123+.........+1219\sum\limits_{n = 1}^{20} {\dfrac{1}{{{2^{n - 1}}}}\,} = \dfrac{1}{{{2^0}}} + \dfrac{1}{{{2^1}}} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + ......... + \dfrac{1}{{{2^{19}}}}
It can be clearly seen that a geometric progression with common ratio 12\dfrac{1}{2} is formed here.
So, the sum of first nn terms of this G.P. with common ratio rr and first term aa is
Sn=a(1rn)1r(7){S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}}\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \left( 7 \right)
So now using (7) for n=12012n1\sum\limits_{n = 1}^{20} {\dfrac{1}{{{2^{n - 1}}}}\,} \,\, where a=1,r=12,n=20a = 1,r = \dfrac{1}{2},n = 20
So we get

n=12012n1=1(1(12)20)112=1122012=2(11220) n=12012n1=2(11220)(8) \Rightarrow \sum\limits_{n = 1}^{20} {\dfrac{1}{{{2^{n - 1}}}}\,} \,\, = \dfrac{{1\left( {1 - {{\left( {\dfrac{1}{2}} \right)}^{20}}} \right)}}{{1 - \dfrac{1}{2}}} = \dfrac{{1 - \dfrac{1}{{{2^{20}}}}}}{{\dfrac{1}{2}}} = 2\left( {1 - \dfrac{1}{{{2^{20}}}}} \right) \\\ \Rightarrow \sum\limits_{n = 1}^{20} {\dfrac{1}{{{2^{n - 1}}}}\,} \,\, = 2\left( {1 - \dfrac{1}{{{2^{20}}}}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \left( 8 \right) \\\

Now substituting this value in (6) we get
S=40(22220) S=38+2220 S=38+1219 \Rightarrow S = 40 - \left( {2 - \dfrac{2}{{{2^{20}}}}} \right) \\\ \Rightarrow S = 38 + \dfrac{2}{{{2^{20}}}} \\\ \Rightarrow S = 38 + \dfrac{1}{{{2^{19}}}}
So the sum of first twenty terms of given series is 38+121938 + \dfrac{1}{{{2^{19}}}}

So option D is the correct answer.

Note: The tricky part of the question is to find the nth{n^{th}} term for the series.
And here to find nth{n^{th}} term for the series we will proceed as firstly,
We can clearly see that the given series is neither A.P. nor G.P.
So now we will try to observe a pattern.
Here, looking at denominators of each term we can see that denominators are powers of two.
And numerators are one less than the power of two.
So, by observing these types of patterns we can solve this question very easily.