Solveeit Logo

Question

Mathematics Question on geometric progression

The sum of first three terms of a G.P. is 3910\frac{39}{10} and their product is 1. Find the common ratio and the terms.

Answer

Let ar,a,ar\frac{a}{r},a,ar be the first three terms of the G.P.

ar+a+ar=3910\frac{a}{r}+a+ar=\frac{39}{10} ….(1)

(ar)(a)(ar)=1(\frac{a}{r})(a)(ar)=1 ...(2)

From (2), we obtain

a3=1a^3=1

⇒ a = 1 (Considering real roots only)

Substituting a = 1 in equation (1), we obtain

1r+1+r=3910\frac{1}{r}+1+r=\frac{39}{10}

⇒ 1 + r + r2=3910rr^2=\frac{39}{10}{r}

⇒ 10 + 10r + 10r239r=010r^2-39r=0

⇒ 10r229r^2-29r + 10 = 0

⇒ 10r2r^2 - 25r - 4r + 10 = 0

⇒ 5r (2r - 5) - 2 (2r - 5) = 0

⇒ (5 - r)(2r - 5) = 0

⇒ r = 25or52\frac {2} {5} or \frac {5} {2}

Thus, the three terms of G.P. are 52,1,and25.\frac{5} {2},1,and \frac{2} {5}.