Solveeit Logo

Question

Question: The sum of first \(p,q,r\) terms of an A.P. are \(a,b,c\) respectively. Show that : \(\dfrac{a}{...

The sum of first p,q,rp,q,r terms of an A.P. are a,b,ca,b,c respectively.
Show that :
ap(qr)+bq(rp)+cr(pq)=0\dfrac{a}{p}\left( {q - r} \right) + \dfrac{b}{q}\left( {r - p} \right) + \dfrac{c}{r}\left( {p - q} \right) = 0

Explanation

Solution

We will first write the sum of first p,q,rp,q,r terms of an A.P, using the formula, Sn=n2(2a+(n1)d){S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right), where aa is the first term and dd is the common difference. Next, solve the LHS by substituting the required values and prove it equal to RHS.

Complete step-by-step answer:
The sum of first nn terms of an A.P. is given by Sn=n2(2a+(n1)d){S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right), where aa is the first term and dd is the common difference.
Then, the sum of first pp terms is
Sp=p2(2a+(p1)d) a=p2(2a+(p1)d) ap=12(2a+(p1)d)  \Rightarrow {S_p} = \dfrac{p}{2}\left( {2a + \left( {p - 1} \right)d} \right) \\\ \Rightarrow a = \dfrac{p}{2}\left( {2a + \left( {p - 1} \right)d} \right) \\\ \Rightarrow \dfrac{a}{p} = \dfrac{1}{2}\left( {2a + \left( {p - 1} \right)d} \right) \\\
Similarly, the sum of first qq terms of an A.P. is given as
Sq=q2(2a+(q1)d) b=q2(2a+(q1)d) bq=12(2a+(q1)d)  \Rightarrow {S_q} = \dfrac{q}{2}\left( {2a + \left( {q - 1} \right)d} \right) \\\ \Rightarrow b = \dfrac{q}{2}\left( {2a + \left( {q - 1} \right)d} \right) \\\ \Rightarrow \dfrac{b}{q} = \dfrac{1}{2}\left( {2a + \left( {q - 1} \right)d} \right) \\\
And the sum of first rr terms of an A.P is given as
Sr=r2(2a+(r1)d) c=r2(2a+(r1)d) cr=12(2a+(r1)d)  \Rightarrow {S_r} = \dfrac{r}{2}\left( {2a + \left( {r - 1} \right)d} \right) \\\ \Rightarrow c = \dfrac{r}{2}\left( {2a + \left( {r - 1} \right)d} \right) \\\ \Rightarrow \dfrac{c}{r} = \dfrac{1}{2}\left( {2a + \left( {r - 1} \right)d} \right) \\\
We have to prove ap(qr)+bq(rp)+cr(pq)=0\dfrac{a}{p}\left( {q - r} \right) + \dfrac{b}{q}\left( {r - p} \right) + \dfrac{c}{r}\left( {p - q} \right) = 0
We will substitute the values of ap\dfrac{a}{p}, bq\dfrac{b}{q} and cr\dfrac{c}{r} in the LHS of the equation.
12(2a+(p1)d)(qr)+12(2a+(q1)d)(rp)+12(2a+(r1)d)(pq) 12((2a+(p1)d)(qr)+(2a+(q1)d)(rp)+(2a+(r1)d)(pq))  \Rightarrow \dfrac{1}{2}\left( {2a + \left( {p - 1} \right)d} \right)\left( {q - r} \right) + \dfrac{1}{2}\left( {2a + \left( {q - 1} \right)d} \right)\left( {r - p} \right) + \dfrac{1}{2}\left( {2a + \left( {r - 1} \right)d} \right)\left( {p - q} \right) \\\ \Rightarrow \dfrac{1}{2}\left( {\left( {2a + \left( {p - 1} \right)d} \right)\left( {q - r} \right) + \left( {2a + \left( {q - 1} \right)d} \right)\left( {r - p} \right) + \left( {2a + \left( {r - 1} \right)d} \right)\left( {p - q} \right)} \right) \\\
Now, we will open the brackets.
12((2a+(p1)d)(qr)+(2a+(q1)d)(rp)+(2a+(r1)d)(pq)) 12(2a+pdd)(qr)+(2a+qdd)(rp)+(2a+rdd)(pq) 12(2aq2ar+pdqpdrdq+dr+2ar2ap+qdrqdpdr+pr+2ap2aq+rdprdqdp+dq) 12(0) 0  \Rightarrow \dfrac{1}{2}\left( {\left( {2a + \left( {p - 1} \right)d} \right)\left( {q - r} \right) + \left( {2a + \left( {q - 1} \right)d} \right)\left( {r - p} \right) + \left( {2a + \left( {r - 1} \right)d} \right)\left( {p - q} \right)} \right) \\\ \Rightarrow \dfrac{1}{2}\left( {2a + pd - d} \right)\left( {q - r} \right) + \left( {2a + qd - d} \right)\left( {r - p} \right) + \left( {2a + rd - d} \right)\left( {p - q} \right) \\\ \Rightarrow \dfrac{1}{2}\left( {2aq - 2ar + pdq - pdr - dq + dr + 2ar - 2ap + qdr - qdp - dr + pr + 2ap - 2aq + rdp - rdq - dp + dq} \right) \\\ \Rightarrow \dfrac{1}{2}\left( 0 \right) \\\ \Rightarrow 0 \\\
As LHS=RHS, the given statement is true.

Note: In an A.P. , the sum of first nn terms is given as Sn=n2(2a+(n1)d){S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right), where aa is the first term and dd is the common difference. Also, if the nth{n^{th}} term is known, then the sum can also be given as Sn=n2(a+an){S_n} = \dfrac{n}{2}\left( {a + {a_n}} \right), where an{a_n} is the last term of the A.P.