Solveeit Logo

Question

Question: The sum of first p, q, r terms of an A.P are a, b, c respectively. Show that : \[\dfrac{a}{p}(q - r)...

The sum of first p, q, r terms of an A.P are a, b, c respectively. Show that : ap(qr)+bq(rp)+cr(pq)=0\dfrac{a}{p}(q - r) + \dfrac{b}{q}(r - p) + \dfrac{c}{r}(p - q) = 0

Explanation

Solution

Use the formula of sum of n terms as Sn=n2(2a+(n1)d){S_n} = \dfrac{n}{2}(2a + (n - 1)d), form all the three equation using the sum of first p, q, r terms of an A.P are a, b, c and equate them to obtain desired result.

Complete step by step answer:
Let the first term of an A.P be A and a common difference be D.
Given that the sum of the first p, q, r terms of an A.P are a, b, c respectively
Now, using the given data we can form all the three equation as
Using the above-mentioned concept in the hint we can move for the formation of three equations for the given term using the mentioned first term and common difference.

a=p2(2A+(p1)D) b=q2(2A+(q1)D) c=r2(2A+(r1)D)  a = \dfrac{p}{2}(2A + (p - 1)D) \\\ b = \dfrac{q}{2}(2A + (q - 1)D) \\\ c = \dfrac{r}{2}(2A + (r - 1)D) \\\

Now, simplify the above equations all the three equations, and mold it in such a way that all the three equations are somewhat similar and then subtract them to cancel out known terms and to form the equation only with known values.

ap=A+(p1)D2 bq=A+(q1)D2 cr=A+(r1)D2  \dfrac{a}{p} = A + \dfrac{{(p - 1)D}}{2} \\\ \dfrac{b}{q} = A + \dfrac{{(q - 1)D}}{2} \\\ \dfrac{c}{r} = A + \dfrac{{(r - 1)D}}{2} \\\

Now, calculating the value of ap(qr)\dfrac{a}{p}(q - r)

ap(qr)=[A+(p1)D2](qr) =A(qr)+(p1)D2(qr)  \dfrac{a}{p}(q - r) = [A + \dfrac{{(p - 1)D}}{2}](q - r) \\\ = A(q - r) + \dfrac{{(p - 1)D}}{2}(q - r) \\\

Now, similarly calculate the value of bq(rp)\dfrac{b}{q}(r - p)
bq(rp)=A(rp)+(q1)2D(rp)\dfrac{b}{q}(r - p) = A(r - p) + \dfrac{{(q - 1)}}{2}D(r - p)
And also similarly for , cr(pq)=A(pq)+(q1)2D(pq)\dfrac{c}{r}(p - q) = A(p - q) + \dfrac{{(q - 1)}}{2}D(p - q)
Now put all the above obtained values in , ap(qr)+bq(rp)+cr(pq)\dfrac{a}{p}(q - r) + \dfrac{b}{q}(r - p) + \dfrac{c}{r}(p - q)

A(pq)+(q1)2D(pq)+A(qr)+(p1)D2(qr)+A(rp)+(q1)2D(rp) A[(pq)+(qr)+(rp)]+D2[(pq)(q1)+(qr)(p1)+(rp)(q1)]  \Rightarrow A(p - q) + \dfrac{{(q - 1)}}{2}D(p - q) + A(q - r) + \dfrac{{(p - 1)D}}{2}(q - r) + A(r - p) + \dfrac{{(q - 1)}}{2}D(r - p) \\\ \Rightarrow A[(p - q) + (q - r) + (r - p)] + \dfrac{D}{2}[(p - q)(q - 1) + (q - r)(p - 1) + (r - p)(q - 1)] \\\

Keeping on simplifying it further,

=A[pq+qr+rp]+D2[(pqprq+qrpqr+p+rprqp+q] =A[0]+D[0] =0  = A[p - q + q - r + r - p] + \dfrac{D}{2}[(pq - pr - q + qr - pq - r + p + rp - rq - p + q] \\\ = A[0] + D[0] \\\ = 0 \\\

Hence, ap(qr)+bq(rp)+cr(pq)=0\dfrac{a}{p}(q - r) + \dfrac{b}{q}(r - p) + \dfrac{c}{r}(p - q) = 0.

Note: In mathematics, an arithmetic progression (AP) or arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant.
The formula for calculation of sum of n terms of an A.P as sn=n2(2a+(n1)d){s_n} = \dfrac{n}{2}(2a + (n - 1)d). Use the given values carefully and substitute them in such a way and cancel the terms which will lead us to prove L.H.S=R.H.S.