Solveeit Logo

Question

Mathematics Question on Arithmetic Progression

The sum of first 9 terms of the series 131+13+231+3+13+23+331+3+5+... \frac{1^3}{1} + \frac{1^3+2^3}{1+3} + \frac{1^3+2^3+3^3}{1+3+5} +... is

A

71

B

96

C

142

D

192

Answer

96

Explanation

Solution

PLAN write the nth term of the given series and simplify it to get its \hspace15mm lowest form. Then, apply, Sn=TnS_n = \sum T_n Given series is 131+13+231+3+13+23+331+3+5+...\frac{1^3}{1} + \frac{1^3+2^3}{1+3} + \frac{1^3+2^3+3^3}{1+3+5} +...\infty Let TnT_n be the nth term of the given series. Tn=13+23+33+...+n31+3+5+...+uptonterms\therefore \, \, T_n =\frac{1^3+2^3+3^3+...+n^3}{1+3+5+...+\, upto\, n\, terms} \hspace10mm =\frac{\bigg\\{\frac{n\, (n+1)}{2}\bigg\\}^2}{n^2} = \frac{(n+1)^2}{4} S9=n=19(n+1)44=14(22+32+...+102)+1212] S_9= \displaystyle \sum^9_{n = 1} \frac{(n+1)^4}{4} =\frac{1}{4} (2^2 +3^2 +...+10^2)+1^2-1^2] \hspace5mm = \frac{1}{4} \bigg[\frac{10(10+1)(20+1)}{6}-1\bigg]=\frac{384}{4}=96