Solveeit Logo

Question

Question: The sum of first 9 terms of series \(\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{...

The sum of first 9 terms of series 131+13+231+3+13+23+331+3+5+..........\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+.......... is
(a) 71
(b) 96
(c) 142
(d) 192

Explanation

Solution

What we will do first is, we will find the pattern in numerator and denominator of the series and generalise the term of series as Tn{{T}_{n}}, then we will find the summation of pattern in numerator and denominator in terms of n and then solve for n = 11.

Complete step-by-step answer:
We are asked to find the sum of 9 terms of given series which is 131+13+231+3+13+23+331+3+5+..........\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+...........
Now, what we can see in the series, there is a pattern in both numerator and denominator.
Now, firstly if we see patterns in numerator then, we can see that there is a series of sum of cube of first n natural numbers.
So, we can denote numerator as =13+23+33+43+53+63.........+n3={{1}^{3}}+{{2}^{3}}+{{3}^{3}}+{{4}^{3}}+{{5}^{3}}+{{6}^{3}}.........+{{n}^{3}}
Now, firstly if we see pattern in denominator then, we can see that there is arithmetic progression whose first term a = 1 , common difference = 2
So, we can denote numerator as =n2(2(1)+(n1)2)=\dfrac{n}{2}\left( 2(1)+(n-1)2 \right), as sum of first n terms of A.P whose first term is a and common difference is d is denoted as n2(2a+(n1)d)\dfrac{n}{2}\left( 2a+(n-1)d \right).
So, as we have seen the pattern of given series 131+13+231+3+13+23+331+3+5+..........\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+..........
Then, we can write the nth{{n}^{th}} term of this series as,
Tn=13+23+33+43+53+63.........+n3n2(2(1)+(n1)2){{T}_{n}}=\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+{{4}^{3}}+{{5}^{3}}+{{6}^{3}}.........+{{n}^{3}}}{\dfrac{n}{2}\left( 2(1)+(n-1)2 \right)} , where Tn{{T}_{n}} denotes nth{{n}^{th}}term of series 131+13+231+3+13+23+331+3+5+...\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+...
On simplifying, we get
Tn=(n(n+1)2)2n2(2(1)+(n1)2){{T}_{n}}=\dfrac{{{\left( \dfrac{n(n+1)}{2} \right)}^{2}}}{\dfrac{n}{2}\left( 2(1)+(n-1)2 \right)}, as sum of cube of first n natural number is (n(n+1)2)2{{\left( \dfrac{n(n+1)}{2} \right)}^{2}}.
Again on simplifying, we get
Tn=n2(n+1)24n2(2n){{T}_{n}}=\dfrac{\dfrac{{{n}^{2}}{{(n+1)}^{2}}}{4}}{\dfrac{n}{2}\left( 2n \right)}
Tn=(n+1)24{{T}_{n}}=\dfrac{{{(n+1)}^{2}}}{4}
For, n = 1 we get T1=(2)24{{T}_{1}}=\dfrac{{{(2)}^{2}}}{4}
For, n = 2 we get T2=(3)24{{T}_{2}}=\dfrac{{{(3)}^{2}}}{4}
.
.
Now, we have 22+32+42......{{2}^{2}}+{{3}^{2}}+{{4}^{2}}...... in numerator of Tn=(n+1)24{{T}_{n}}=\dfrac{{{(n+1)}^{2}}}{4} but (1)2{{(1)}^{2}}is missing so we can write numerator of Tn=(n+1)24{{T}_{n}}=\dfrac{{{(n+1)}^{2}}}{4}as n=1n(n)21\sum\limits_{n=1}^{n}{{{(n)}^{2}}}-1 because n=1n(n)2=12+22+32+......\sum\limits_{n=1}^{n}{{{(n)}^{2}}}={{1}^{2}}+{{2}^{2}}+{{3}^{2}}+...... and n=1n(n)21=22+32+......\sum\limits_{n=1}^{n}{{{(n)}^{2}}}-1={{2}^{2}}+{{3}^{2}}+......
Tn=n=1n(n)214{{T}_{n}}=\dfrac{\sum\limits_{n=1}^{n}{{{(n)}^{2}}}-1}{4}
We know that n=1n(n)2=12+22+32+......=n(n+1)(2n+1)6\sum\limits_{n=1}^{n}{{{(n)}^{2}}}={{1}^{2}}+{{2}^{2}}+{{3}^{2}}+......=\dfrac{n(n+1)(2n+1)}{6}
So, Tn=n(n+1)(2n+1)614{{T}_{n}}=\dfrac{\dfrac{n(n+1)(2n+1)}{6}-1}{4}
At, n = 11
T11=11(11+1)(2(11)+1)614{{T}_{11}}=\dfrac{\dfrac{11(11+1)(2(11)+1)}{6}-1}{4}
On, solving, we get
T11=3844{{T}_{11}}=\dfrac{384}{4}
T11=96{{T}_{11}}=96

So, the correct answer is “Option (b)”.

Note: To solve such a typical question, try to find a pattern in the numerator and denominator of the series first then substitute the formula of summation of that pattern and then solve for any value of n. Calculation is a priority for these types of questions so try to avoid calculation error.