Solveeit Logo

Question

Question: The sum of first \(20\) terms of the sequence \(0.7,0.77,0.777,....\) is: A)\(\dfrac{7}{81}\left( ...

The sum of first 2020 terms of the sequence 0.7,0.77,0.777,....0.7,0.77,0.777,.... is:
A)781(1791020)\dfrac{7}{81}\left( 179-{{10}^{-20}} \right)
B)79(991020)\dfrac{7}{9}\left( 99-{{10}^{-20}} \right)
C)781(179+1020)\dfrac{7}{81}\left( 179+{{10}^{-20}} \right)
D)79(99+1020)\dfrac{7}{9}\left( 99+{{10}^{-20}} \right)

Explanation

Solution

he question can be solved using the concept of Geometric Progression (G.P) where the sum of Geometric Progression (G.P) is given by a(1rn)1r,r<1\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},r<1 where aa is the first term and rr is the common ratio, this formula is applicable only if the common ratio of the series is less than one. In a Geometric Progression (G.P) the terms are arranged such that they have a common ratio and which is given by a+ar+ar2+ar3+.....arna+ar+a{{r}^{2}}+a{{r}^{3}}+.....a{{r}^{n}}.

Complete step by step solution:
The sum of the terms of sequence is represented by:
S=0.7+0.77+0.777+.........(20terms)S=0.7+0.77+0.777+.........\left( 20terms \right)……(1)
Eliminating the common term 77 and rewriting the equation (1) we get:
S=7(0.1+0.11+0.111+.........(20terms))\Rightarrow S=7\left( 0.1+0.11+0.111+.........\left( 20terms \right) \right) ……(2)
Multiplying and dividing by 99 in equation (2) we get:
S=79(0.9+0.99+0.999+.........(20terms))\Rightarrow S=\dfrac{7}{9}\left( 0.9+0.99+0.999+.........\left( 20terms \right) \right) ……(3)
Writing 0.9=(10.1)0.9=\left( 1-0.1 \right) so that we can get a simplified version in equation (3) we get:
S=79((10.1)+(10.01)+(10.001)+.........20terms)\Rightarrow S=\dfrac{7}{9}\left( \left( 1-0.1 \right)+\left( 1-0.01 \right)+\left( 1-0.001 \right)+.........20terms \right) ……(4)
Since there are 2020 terms of 11 therefore equation (4) can be rewritten and we get:
S=79[20(110+1102+1103+........11020)]\Rightarrow S=\dfrac{7}{9}\left[ 20-\left( \dfrac{1}{10}+\dfrac{1}{{{10}^{2}}}+\dfrac{1}{{{10}^{3}}}+........\dfrac{1}{{{10}^{20}}} \right) \right] ……(5)
The terms 110+1102+1103+........11020\dfrac{1}{10}+\dfrac{1}{{{10}^{2}}}+\dfrac{1}{{{10}^{3}}}+........\dfrac{1}{{{10}^{20}}} forms a Geometric Progression (G.P) with first term 110\dfrac{1}{10} and common ratio 110\dfrac{1}{10} .
Sum of Geometric Progression (G.P) is given by a(1rn)1r,r<1\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},r<1
Here the values of a and r are as listed below:
a=110,r=110 S=79[20110(1(110)n1110)] \begin{aligned} & a=\dfrac{1}{10},r=\dfrac{1}{10} \\\ & S=\dfrac{7}{9}\left[ 20-\dfrac{1}{10}\left( \dfrac{1-{{\left( \dfrac{1}{10} \right)}^{n}}}{1-\dfrac{1}{10}} \right) \right] \\\ \end{aligned} ……(6)
S=79[20110(11020910)] S=79[2019(11020)] S=79[180(11020)9] \begin{aligned} & \Rightarrow S=\dfrac{7}{9}\left[ 20-\dfrac{1}{10}\left( \dfrac{1-{{10}^{-20}}}{\dfrac{9}{10}} \right) \right] \\\ & \Rightarrow S=\dfrac{7}{9}\left[ 20-\dfrac{1}{9}\left( 1-{{10}^{-20}} \right) \right] \\\ & \Rightarrow S=\dfrac{7}{9}\left[ \dfrac{180-\left( 1-{{10}^{-20}} \right)}{9} \right] \\\ \end{aligned}

On simplifying the above equation we get:
S=781[179+1020]\therefore S=\dfrac{7}{81}\left[ 179+{{10}^{-20}} \right]

So, the correct answer is “Option C”.

Note: Since here the number of terms is specified therefore the sum of infinite series of Geometric Progression (G.P) should not be used i.e. a1r\dfrac{a}{1-r} and the common ratio is less than 11 therefore the correct formula of Geometric Progression (G.P) should be used i.e. a(1rn)1r,r<1\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},r<1.
The formula a(rn1)r1,r<1\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1},r<1 should not be used.