Question
Mathematics Question on Sequence and series
The sum of first 20 terms of the sequence 0.7,0.77,0.777,...., is
817(179−10−20)
97(99−10−20)
817(179+10−20)
97(99+10−20)
817(179+10−20)
Solution
Let S = 0.7 + 0.77 + 0.777 +...
=107+10277+103777+...upto 20 terms
=7[101+10211+103111+...upto 20 terms]
=97[109+10099+1000999+...upto 20 terms]
=97[(1−101)+(1−1021)+(1−1031)
\hspace70mm +...+ upto\ 20\ terms]
=97[(1+1+...+ upto 20 terms)
\hspace30mm -\bigg(\frac{1}{10} + \frac{1}{10^2} + \frac{1}{10^3}+...+ upto\ 20\ terms \bigg) \Bigg]
=\frac{7}{9}\Bigg[20-\frac{\frac{1}{10}\bigg\\{1-\big(\frac{1}{10}\big)^{20}\bigg\\}}{1-\frac{1}{10}}\Bigg]
\hspace30mm \Bigg[ \begin{array}
\ \because \displaystyle\sum_{ i = 1}^{ 20} = 20\ and\ sum\ of\ n\ terms\ of \\\
GP, S_n = \frac{a (1 - r^n)}{1 - r } when \ ( r < 1 ) \\\
\end{array} \Bigg ]
=\frac{7}{9}\Bigg[20-\frac{1}{9}\bigg\\{1-\bigg(\frac{1}{10}\bigg)^{20}\bigg\\}{}\Bigg]
=97[9179+91(101)20]=817[179+(10)−20]