Solveeit Logo

Question

Question: The sum of divisors of the number 3600 is...

The sum of divisors of the number 3600 is

A

5 x 3 x 3

B

(25 – 1) (3312)6mu(5314)\left( \frac{3^{3} - 1}{2} \right)\mspace{6mu}\left( \frac{5^{3} - 1}{4} \right)

C

(24 – 1) (3212)6mu(5214)\left( \frac{3^{2} - 1}{2} \right)\mspace{6mu}\left( \frac{52 - 1}{4} \right)

D

None of these

Answer

(25 – 1) (3312)6mu(5314)\left( \frac{3^{3} - 1}{2} \right)\mspace{6mu}\left( \frac{5^{3} - 1}{4} \right)

Explanation

Solution

Now 3600 = 24 x 32 x 52. Hence any divisor of 3600 is of the form 2a 3b 5c where a∈{0, 1,2 , 3, 4}, b ∈ {0, 1, 2} and c ∈ {0, 1, 2}. All the divisors are terms in the product

(1+2+22 + 23 + 24) (1+3+32). (1+5+52) which equals the sum of all the divisors.

∴ Required sum

= (25121)x(33131)x(53151)\left( \frac{2^{5} - 1}{2 - 1} \right)x\left( \frac{3^{3} - 1}{3 - 1} \right)x\left( \frac{5^{3} - 1}{5 - 1} \right)