Solveeit Logo

Question

Mathematics Question on coordinates of a point in space

The sum of diameters of the circles that touch (i) the parabola 75x275x^2 = 64(5y3)64(5y – 3) at the point (85\frac{8}{5}, 65\frac{6}{5}) and (ii) the y-axis is equal to _______.

Answer

x2x^2=64.575\frac{64.5}{75}y−35\frac{3}{5}
equation of the tangent at 85\frac{8}{5},65\frac{6}{5}
x⋅85\frac{8}{5}=6415\frac{64}{15} y+652\frac{6}{\frac{5}{2}}35\frac{3}{5}
3x – 4y = 0
equation of a family of circles is
x−825\frac{8^2}{5}+y−625\frac{6^2}{5}+λ(3x−4y)=0
It touches the y-axis so f2f^2 = c
x2x^2+y2y^2+x3λ−165\frac{16}{5}+y−4λ−125\frac{12}{5}+4=0
4λ+12254\frac{4λ+\frac{12^2}{5}}{4}=4
λ=25\frac{2}{5}or λ=−85\frac{8}{5}
λ=25\frac{2}{5},r=1
λ=−85\frac{8}{5},r=4
d1+d2=10