Solveeit Logo

Question

Mathematics Question on Parabola

The sum of diameters of the circles that touch (i) the parabola 75 x 2 = 64(5 y – 3) at the point (85,65\frac{8}{5},\frac{6}{5}) and (ii) the y -axis is equal to _______.

Answer

The equation of the circle touching the given parabola at P
Equation of tangent to the parabola at
P(85,65\frac{8}{5},\frac{6}{5})
75x⋅85=160(y+65\frac{6}{5})−192
⇒ 120 x = 160 y
⇒ 3 x = 4 y
The equation of the circle touching the given parabola at P can be taken as
(x−85\frac{8}{5})2+(y−65\frac{6}{5})2+λ(3x−4y)=0
If this circle touches the y -axis then
6425\frac{64}{25}+(y−65)2+λ(−4y)=0
⇒y2−2y(2λ+65)+4=0
D = 0
⇒(2λ+66\frac{2λ+6}{6})2=4
⇒λ=25\frac{2}{5} or −85\frac{8}{5}
Radius = 1 or 4
Sum of diameter = 10