Solveeit Logo

Question

Question: The sum of consecutive natural numbers is 180 more than the average of the numbers. What is the sum ...

The sum of consecutive natural numbers is 180 more than the average of the numbers. What is the sum of the largest and the smallest of the ten numbers?
A. 45
B. 48
C. 50
D. 40

Explanation

Solution

Hint: Take the terms as n,(n+1),(n+2),(n+3).............(n+9)n,\left( {n + 1} \right),\left( {n + 2} \right),\left( {n + 3} \right){\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}\left( {n + 9} \right). Then, find sum and average and depending upon the question form the equation to find values of smallest and largest terms of the series.

Complete step-by-step answer:
In the question we are given that the sum of ten consecutive natural numbers is 180, more than the average of numbers and from the given information we have to find the sum of the largest and smallest of the ten numbers.
Let's consider smallest number be n, so the other nine numbers will be (n+1),(n+2),(n+3),(n+4),(n+5),(n+6),(n+7),(n+8),(n+9)\left( {n + 1} \right),\left( {n + 2} \right),\left( {n + 3} \right),\left( {n + 4} \right),\left( {n + 5} \right),\left( {n + 6} \right),\left( {n + 7} \right),\left( {n + 8} \right),\left( {n + 9} \right)
In the question, the term average is given which means sum of all the given terms by total number of terms.
Here, terms are n,(n+1),(n+2),(n+3),(n+4),(n+5),(n+6),(n+7),(n+8),(n+9)n,\left( {n + 1} \right),\left( {n + 2} \right),\left( {n + 3} \right),\left( {n + 4} \right),\left( {n + 5} \right),\left( {n + 6} \right),\left( {n + 7} \right),\left( {n + 8} \right),\left( {n + 9} \right)
So, the sum of the term is,
n+(n+1)+(n+2)+(n+3)+(n+4)+(n+5)+(n+6)+(n+7)+(n+8)+(n+9)n + \left( {n + 1} \right) + \left( {n + 2} \right) + \left( {n + 3} \right) + \left( {n + 4} \right) + \left( {n + 5} \right) + \left( {n + 6} \right) + \left( {n + 7} \right) + \left( {n + 8} \right) + \left( {n + 9} \right)
which can be written as10n+45{\rm{1}}0{\rm{n}} + {\rm{45}}.
The average of the terms will be sum of the terms by total number of terms or 10n+4510(n+92)\dfrac{{10n + 45}}{{10}} \Rightarrow \left( {n + \dfrac{9}{2}} \right)
Hence, according to the question, we can write an equation as:
10n+45=180+n+9210n + 45 = 180 + n + \dfrac{9}{2}
Now, we will subtract 'n' from both the sides of the equation, so, we get,
10n+45n=180+n+92n\9n+45=180+92Taking LCM on RHSwe get\9n+45=(360+9)2\9n+45=3692\begin{array}{l}10n + 45 - n = 180 + n + \dfrac{9}{2} - n\\\9n + 45 = 180 + \dfrac{9}{2}\\\\{\rm{Taking\ LCM\ on\ RHS\, we\ get}}\\\9n + 45 = \dfrac{{\left( {360 + 9} \right)}}{2}\\\9n + 45 = \dfrac{{369}}{2}\end{array}
Now, we will subtract by 45 from both the sides, so, we get,
9n+4545=369245\9n=369245Taking LCM of terms on RHSwe get,\9n=369902\9n=2792\begin{array}{l}9n + 45 - 45 = \dfrac{{369}}{2} - 45\\\9n = \dfrac{{369}}{2} - 45{\rm{ }}\\\\{\rm{Taking\ LCM\ of\ terms\ on\ RHS\, we\ get,}}\\\9n = \dfrac{{369 - 90}}{2}\\\9n = \dfrac{{279}}{2}\end{array}
Dividing by 9 on both sides, we get
9n9=2792×9\dfrac{{9n}}{9} = \dfrac{{279}}{{2 \times 9}}
So, the value of n is 312\dfrac{{31}}{2}
The smallest term was n which is 312\dfrac{{31}}{2} and largest was n+9312+9492n + 9 \Rightarrow \dfrac{{31}}{2} + 9 \Rightarrow \dfrac{{49}}{2}
So, the sum will be 312+49280240\dfrac{{31}}{2} + \dfrac{{49}}{2} \Rightarrow \dfrac{{80}}{2} \Rightarrow {\rm{40}}.
So, the correct option is D.

Note: Instead of taking terms as n,(n+1),(n+2),(n+3).............(n+9)n,\left( {n + 1} \right),\left( {n + 2} \right),\left( {n + 3} \right){\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}\left( {n + 9} \right) take an arithmetic progression with first term as n and total number of terms as 10 and common difference as 1. Then, we can use the formula to find sum of n terms as Sn=n2(2a+(n1)d)Sn = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right), where n is the number of terms, a is first term and d is common difference. So, we will get it as
Sn=102(2n+(101)1)\Sn=102(2n+9)\Sn=10n+45\begin{array}{l}Sn = \dfrac{{10}}{2}\left( {2n + \left( {10 - 1} \right)1} \right)\\\Sn = \dfrac{{10}}{2}\left( {2n + 9} \right)\\\Sn = 10n + 45\end{array}

Now, we can proceed from here as usual.