Solveeit Logo

Question

Question: The sum of an infinite geometric series whose first term is the limit of the function \(f\left( x \r...

The sum of an infinite geometric series whose first term is the limit of the function f(x)=tanxsinxsin3xf\left( x \right) = \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}} as x0x \Rightarrow 0 and whose common ratio is the limit of the function g(x)=1x(cos1x)2g\left( x \right) = \dfrac{{1 - \sqrt x }}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}} as x1x \Rightarrow 1 is
A. 13\dfrac{1}{3}
B. 14\dfrac{1}{4}
C. 12\dfrac{1}{2}
D. 23\dfrac{2}{3}

Explanation

Solution

Hint : First find the limits of the given two functions and limit of f(x)f\left( x \right) is a (the first term of G.P) and limit of g(x)g\left( x \right) is r (Common ratio of G.P). Sum of infinite terms of a Geometric progression is given by the below mentioned formula.
Formulas used:
1. Sum of infinite terms of a G.P is a1r\dfrac{a}{{1 - r}} where a is the first term and r is the common ratio and r must be greater than -1 and less than 1.
2. limx0sinxx=1\mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\sin x}}{x} = 1

Complete step-by-step answer :
We are given that the limit of the function f(x)=tanxsinxsin3xf\left( x \right) = \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}} as x0x \Rightarrow 0 is the first term and limit of the function g(x)=1x(cos1x)2g\left( x \right) = \dfrac{{1 - \sqrt x }}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}} as x1x \Rightarrow 1 is the common ratio of an infinite geometric series.
We have to find the sum of this infinite geometric series.
Limit of the function f(x)=tanxsinxsin3xf\left( x \right) = \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}} as x0x \Rightarrow 0 is limx0tanxsinxsin3x\mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}}
tanx\tan x can also be written as sinxcosx\dfrac{{\sin x}}{{\cos x}}
limx0(sinxcosx)sinxsinx(sin2x)\Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\left( {\dfrac{{\sin x}}{{\cos x}}} \right) - \sin x}}{{\sin x\left( {{{\sin }^2}x} \right)}}
limx0(1cosx)1(sin2x)=limx0(1cosxcosx)(sin2x)\Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\left( {\dfrac{1}{{\cos x}}} \right) - 1}}{{\left( {{{\sin }^2}x} \right)}} = \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\left( {\dfrac{{1 - \cos x}}{{\cos x}}} \right)}}{{\left( {{{\sin }^2}x} \right)}}
limx01cosxcosx(sin2x)\Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{1 - \cos x}}{{\cos x\left( {{{\sin }^2}x} \right)}}
We know that sin2x+cos2x=1sin2x=1cos2x{\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x
limx01cosxcosx(1cos2x)=limx01cosxcosx(1cosx)(1+cosx)\Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{1 - \cos x}}{{\cos x\left( {1 - {{\cos }^2}x} \right)}} = \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{1 - \cos x}}{{\cos x\left( {1 - \cos x} \right)\left( {1 + \cos x} \right)}}
limx01cosx(1+cosx)\Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{1}{{\cos x\left( {1 + \cos x} \right)}}, cos0=1\cos 0 = 1
limx01cosx(1+cosx)=1cos0(1+cos0)=12\Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{1}{{\cos x\left( {1 + \cos x} \right)}} = \dfrac{1}{{\cos 0\left( {1 + \cos 0} \right)}} = \dfrac{1}{2}
The first term of the series is 12\dfrac{1}{2}
Limit of the function g(x)=1x(cos1x)2g\left( x \right) = \dfrac{{1 - \sqrt x }}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}} as x1x \Rightarrow 1 is limx11x(cos1x)2\mathop {\lim }\limits_{x \Rightarrow 1} \dfrac{{1 - \sqrt x }}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}}
Multiply and divide the limit with 1+x1 + \sqrt x
limx1(1x)(1+x)(cos1x)2(1+x)=1(1+1)limx11x(cos1x)2\Rightarrow \mathop {\lim }\limits_{x \Rightarrow 1} \dfrac{{\left( {1 - \sqrt x } \right)\left( {1 + \sqrt x } \right)}}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}\left( {1 + \sqrt x } \right)}} = \dfrac{1}{{\left( {1 + \sqrt 1 } \right)}}\mathop {\lim }\limits_{x \Rightarrow 1} \dfrac{{1 - x}}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}} as (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}
Let cos1x=t{\cos ^{ - 1}}x = t, this gives x=costx = \cos t and the limit changes from x1x \Rightarrow 1 to t0t \Rightarrow 0 as cos11{\cos ^{ - 1}}1 is equal to zero.
Substitute the values of x and cos1x{\cos ^{ - 1}}x
12limt01costt2\Rightarrow \dfrac{1}{2}\mathop {\lim }\limits_{t \Rightarrow 0} \dfrac{{1 - \cos t}}{{{t^2}}}
We can write cost\cos t as 12sin2t21 - 2{\sin ^2}\dfrac{t}{2}
12limt01(12sin2(t2))t2=2sin2(t2)t\Rightarrow \dfrac{1}{2}\mathop {\lim }\limits_{t \Rightarrow 0} \dfrac{{1 - \left( {1 - 2{{\sin }^2}\left( {\dfrac{t}{2}} \right)} \right)}}{{{t^2}}} = \dfrac{{2{{\sin }^2}\left( {\dfrac{t}{2}} \right)}}{t}
Multiplying and dividing with 14\dfrac{1}{4}
12×2×14limt0sin(t2)×sin(t2)(t2)×(t2)=14×1×1\Rightarrow \dfrac{1}{2} \times 2 \times \dfrac{1}{4}\mathop {\lim }\limits_{t \Rightarrow 0} \dfrac{{\sin \left( {\dfrac{t}{2}} \right) \times \sin \left( {\dfrac{t}{2}} \right)}}{{\left( {\dfrac{t}{2}} \right) \times \left( {\dfrac{t}{2}} \right)}} = \dfrac{1}{4} \times 1 \times 1 as limx0sinxx=1\mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\sin x}}{x} = 1 is equal to 14\dfrac{1}{4}
Therefore, the common ratio of the series is 14\dfrac{1}{4}
The sum of the infinite terms of the geometric series will be a1r=(12)1(14)=(12)(34)=12×43=23\dfrac{a}{{1 - r}} = \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}} = \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{3}{4}} \right)}} = \dfrac{1}{2} \times \dfrac{4}{3} = \dfrac{2}{3}
Hence, the correct option is Option D, 23\dfrac{2}{3}
So, the correct answer is “Option D”.

Note : When the common ratio is greater than 1 the geometric series does not have a sum, which means the sum cannot be determined. Only when the common ratio is between -1 and 1 the above formula is applicable. Do not confuse the formulas of G.P with the formulas of A.P.