Solveeit Logo

Question

Question: The sum of amplitude of z and another complex number is \(z = 1 - \cos\alpha + i\sin\alpha\). The ot...

The sum of amplitude of z and another complex number is z=1cosα+isinαz = 1 - \cos\alpha + i\sin\alpha. The other complex number can be written.

A

zz

B

α2\frac{\alpha}{2}

C

z

D

α2- \frac{\alpha}{2}

Answer

α2\frac{\alpha}{2}

Explanation

Solution

We have =xiy= x - iy and let their complex a,b,x,yR.a,b,x,y \in R. and given that

\mathbf{\therefore}

1ix=2x\mathbf{|1 - i}\mathbf{|}^{\mathbf{x}}\mathbf{=}\mathbf{2}^{\mathbf{x}}; (2)x=2x\mathbf{(}\sqrt{\mathbf{2}}\mathbf{)}^{\mathbf{x}}\mathbf{=}\mathbf{2}^{\mathbf{x}}

2x/2=2x\mathbf{2}^{\mathbf{x/2}}\mathbf{=}\mathbf{2}^{\mathbf{x}}

which lies in second quadrant, i.e. x2=x\frac{x}{2} = x.