Question
Question: The sum of all \(x \in \left[ {0,\pi } \right]\) which satisfy the equation \(\sin x + \dfrac{1}{2}\...
The sum of all x∈[0,π] which satisfy the equation sinx+21cosx=sin2(x+4π)is
A. 6π
B. 65π
C. π
D. 2π
Solution
Hint: Use simple trigonometric formulas.
As we know that,
cos2x=1−2sin2x ∴sin2x=21−cos2x
Given: sinx+21cosx=sin2(x+4π)
Substituting the value of sinx, we get
⇒sinx+21cosx=21(1−cos(2x+2π)) ⇒sinx+21cosx=21(1+sin2x) (∵cos(2π+θ)=−sinθ) ⇒22sinx+cosx=21+sin2x ⇒2sinx+cosx=1+sin2x
Now, putting sin2x=2sinxcosx in above equation, we get
⇒2sinx+cosx=1+2sinxcosx ⇒2sinxcosx−2sinx−cosx+1=0
Now taking 2sinx common, we get
⇒2sinx(cosx−1)−1(cosx−1)=0 ⇒(2sinx−1)(cosx−1)=0
Either (2sinx−1)=0 or (cosx−1)=0.
If we take (2sinx−1)=0, then
⇒(2sinx−1)=0 ⇒2sinx=1 ⇒sinx=21 ⇒x=6π,65π
And if we take (cosx−1)=0, then
⇒(cosx−1)=0 ⇒cosx=1 ⇒x=0∘
Now, x∈[0,π]is given.
So, the sum of all x is.
Hence, the correct option is C.
Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.