Solveeit Logo

Question

Question: The sum of all \(x \in \left[ {0,\pi } \right]\) which satisfy the equation \(\sin x + \dfrac{1}{2}\...

The sum of all x[0,π]x \in \left[ {0,\pi } \right] which satisfy the equation sinx+12cosx=sin2(x+π4)\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)is
A. π6\dfrac{\pi }{6}
B. 5π6\dfrac{{5\pi }}{6}
C. π\pi
D. 2π2\pi

Explanation

Solution

Hint: Use simple trigonometric formulas.

As we know that,
cos2x=12sin2x sin2x=1cos2x2  \cos 2x = 1 - 2{\sin ^2}x \\\ \therefore {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} \\\
Given: sinx+12cosx=sin2(x+π4)\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)
Substituting the value of sinx\sin x, we get
sinx+12cosx=12(1cos(2x+π2)) sinx+12cosx=12(1+sin2x) (cos(π2+θ)=sinθ) 2sinx+cosx2=1+sin2x2 2sinx+cosx=1+sin2x  \Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 - \cos \left( {2x + \dfrac{\pi }{2}} \right)} \right) \\\ \Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 + \sin 2x} \right){\text{ }}\left( {\because \cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta } \right) \\\ \Rightarrow \dfrac{{2\sin x + \cos x}}{2} = \dfrac{{1 + \sin 2x}}{2} \\\ \Rightarrow 2\sin x + \cos x = 1 + \sin 2x \\\
Now, putting sin2x=2sinxcosx\sin 2x = 2\sin x\cos x in above equation, we get
2sinx+cosx=1+2sinxcosx 2sinxcosx2sinxcosx+1=0  \Rightarrow 2\sin x + \cos x = 1 + 2\sin x\cos x \\\ \Rightarrow 2\sin x\cos x - 2\sin x - \cos x + 1 = 0 \\\
Now taking 2sinx2\sin x common, we get
2sinx(cosx1)1(cosx1)=0 (2sinx1)(cosx1)=0  \Rightarrow 2\sin x\left( {\cos x - 1} \right) - 1\left( {\cos x - 1} \right) = 0 \\\ \Rightarrow \left( {2\sin x - 1} \right)\left( {\cos x - 1} \right) = 0 \\\
Either (2sinx1)=0\left( {2\sin x - 1} \right) = 0 or (cosx1)=0\left( {\cos x - 1} \right) = 0.
If we take (2sinx1)=0\left( {2\sin x - 1} \right) = 0, then
(2sinx1)=0 2sinx=1 sinx=12 x=π6,5π6  \Rightarrow \left( {2\sin x - 1} \right) = 0 \\\ \Rightarrow 2\sin x = 1 \\\ \Rightarrow \sin x = \dfrac{1}{2} \\\ \Rightarrow x = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} \\\
And if we take (cosx1)=0\left( {\cos x - 1} \right) = 0, then
(cosx1)=0 cosx=1 x=0  \Rightarrow \left( {\cos x - 1} \right) = 0 \\\ \Rightarrow \cos x = 1 \\\ \Rightarrow x = {0^ \circ } \\\
Now, x[0,π]x \in \left[ {0,\pi } \right]is given.
So, the sum of all xx is.

x=π6+5π6+0 x=6π6 x=π  x = \dfrac{\pi }{6} + \dfrac{{5\pi }}{6} + 0 \\\ x = \dfrac{{6\pi }}{6} \\\ x = \pi \\\

Hence, the correct option is C.

Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.