Solveeit Logo

Question

Question: The sum of all values of \(\theta \in \left( 0,\dfrac{\pi }{2} \right)\) satisfying \({{\sin }^{2}}2...

The sum of all values of θ(0,π2)\theta \in \left( 0,\dfrac{\pi }{2} \right) satisfying sin22θ+cos42θ=34{{\sin }^{2}}2\theta +{{\cos }^{4}}2\theta =\dfrac{3}{4} is?
A. π2\dfrac{\pi }{2}
B. π\pi
C. 3π8\dfrac{3\pi }{8}
D. 5π4\dfrac{5\pi }{4}

Explanation

Solution

Hint: In the above question we will substitute the value of sin22θ{{\sin }^{2}}2\theta in form of cos22θ{{\cos }^{2}}2\theta by using the trigonometric identity as follows:
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
After that we will use the general solution for cos2θ=cos2α{{\cos }^{2}}\theta ={{\cos }^{2}}\alpha given by,
θ=nπ±α\theta =n\pi \pm \alpha

Complete step-by-step answer:

We have been asked to find the sum of all values of θ(0,π2)\theta \in \left( 0,\dfrac{\pi }{2} \right) satisfying sin22θ+cos42θ=34{{\sin }^{2}}2\theta +{{\cos }^{4}}2\theta =\dfrac{3}{4}.
We know that sin22θ+cos22θ=1{{\sin }^{2}}2\theta +{{\cos }^{2}}2\theta =1, which is a trigonometric identity.
sin22θ=1cos22θ{{\sin }^{2}}2\theta =1-{{\cos }^{2}}2\theta
Substituting the values of sin22θ{{\sin }^{2}}2\theta in the given equation, we get,
1cos22θ+cos42θ=341-{{\cos }^{2}}2\theta +{{\cos }^{4}}2\theta =\dfrac{3}{4}
On rearranging the terms, we get,
(cos22θ)2cos22θ+134=0 (cos22θ)2cos22θ+14=0 \begin{aligned} & {{\left( {{\cos }^{2}}2\theta \right)}^{2}}-{{\cos }^{2}}2\theta +1-\dfrac{3}{4}=0 \\\ & {{\left( {{\cos }^{2}}2\theta \right)}^{2}}-{{\cos }^{2}}2\theta +\dfrac{1}{4}=0 \\\ \end{aligned}
The above equation is in the form of x22ax+a2{{x}^{2}}-2ax+{{a}^{2}} which is equal to (xa)2{{\left( x-a \right)}^{2}}.
Here, x=cos22θ and a=12x={{\cos }^{2}}2\theta \ and\ a=\dfrac{1}{2}.
(cos22θ12)2=0 cos22θ=12=cos2(π4) \begin{aligned} & \Rightarrow {{\left( {{\cos }^{2}}2\theta -\dfrac{1}{2} \right)}^{2}}=0 \\\ & \Rightarrow {{\cos }^{2}}2\theta =\dfrac{1}{2}={{\cos }^{2}}\left( \dfrac{\pi }{4} \right) \\\ \end{aligned}
Since, cosπ4=12\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}.
We know the general solution for cos2θ=cos2α{{\cos }^{2}}\theta ={{\cos }^{2}}\alpha is given by,
θ=nπ±α 2θ=nπ±π4 \begin{aligned} & \theta =n\pi \pm \alpha \\\ & \Rightarrow 2\theta =n\pi \pm \dfrac{\pi }{4} \\\ \end{aligned}
For n=0n=0,
2θ=0±π4 θ=±π8 \begin{aligned} & 2\theta =0\pm \dfrac{\pi }{4} \\\ & \theta =\pm \dfrac{\pi }{8} \\\ \end{aligned}
Since, θ(0,π2)θ=π8\theta \in \left( 0,\dfrac{\pi }{2} \right)\Rightarrow \theta =\dfrac{\pi }{8}
For n=1n=1,
2θ=π±π4 2θ=π+π4 θ=5π8 2θ=ππ4 θ=3π8 \begin{aligned} & 2\theta =\pi \pm \dfrac{\pi }{4} \\\ & 2\theta =\pi +\dfrac{\pi }{4} \\\ & \Rightarrow \theta =\dfrac{5\pi }{8} \\\ & 2\theta =\pi -\dfrac{\pi }{4} \\\ & \Rightarrow \theta =\dfrac{3\pi }{8} \\\ \end{aligned}
Since, 5π8>π2\dfrac{5\pi }{8}>\dfrac{\pi }{2}. So, we cannot take this value according to the given condition in the question.
θ=3π8\Rightarrow \theta =\dfrac{3\pi }{8} satisfies the question.
Hence, the solutions for the given equation are π8 and 3π8\dfrac{\pi }{8}\ and\ \dfrac{3\pi }{8}.
So, their sum =π8+3π8=\dfrac{\pi }{8}+\dfrac{3\pi }{8}
=π+3π8 =4π8 =π2 \begin{aligned} & =\dfrac{\pi +3\pi }{8} \\\ & =\dfrac{4\pi }{8} \\\ & =\dfrac{\pi }{2} \\\ \end{aligned}
Therefore, the correct option is (A).

Note: Be careful while choosing the option as sometimes we just forget that we have to find the sum of the values that satisfy the equation instead of it we choose the value i.e. option (C) 3π8\dfrac{3\pi }{8}.
Also, remember that while finding the value of θ'\theta ' take care of the given condition on θ(0,π2)\theta \in \left( 0,\dfrac{\pi }{2} \right) otherwise you will get an extra root.