Solveeit Logo

Question

Mathematics Question on Sequence and series

The sum of all two digit natural numbers which leave a remainder 55 when they are divided by 77 is equal to

A

715

B

702

C

615

D

602

Answer

702

Explanation

Solution

The required natural numbers are 12,19,26,33,40,47,54,61,68,75,82,89,9612,19,26,33,40,47,54,61,68,75,82,89,96 \therefore Sum=12+19+26+33+40+47+54Sum=12+19+26+33+40+47+54 +61+68+75+82+89+96+61+68+75+82+89+96 =702=702 Alternate The required natural numbers are 12, 19, 26, ...,9612,\text{ }19,\text{ }26,\text{ }...,96 Let there are n terms in this series. Then last term =96=12+(n1)7=96=12+(n-1)7 \Rightarrow n1=847=12n-1=\frac{84}{7}=12 \Rightarrow n=13n=13 Now, sum of these terms S13=132[24+12×7]=132×108{{S}_{13}}=\frac{13}{2}[24+12\times 7]=\frac{13}{2}\times 108 =13×54=702=13\times 54=702