Question
Mathematics Question on Exponential and Logarithmic Functions
The sum of all the solutions of the equation (8)2x−16⋅(8)x+48=0is:
A
1+log6(8)
B
log6(6)
C
1+log6(6)
D
log6(4)
Answer
1+log6(6)
Explanation
Solution
The given equation is:
(8)2x−16⋅(8)x+48=0.
Substitute t=(8)x, which simplifies the equation to:
t2−16t+48=0.
Solve the quadratic equation:
t2−16t+48=0⟹(t−4)(t−12)=0.
Hence:
t=4ort=12.
Back-substituting t=(8)x, we get:
(8)x=4⟹x=log8(4),
(8)x=12⟹x=log8(12).
The sum of the solutions is:
Sum=log8(4)+log8(12).
Using the logarithmic property loga(m)+loga(n)=loga(m⋅n):
Sum=log8(4⋅12)=log8(48).
Express 48 as 8⋅6:
log8(48)=log8(8⋅6)=log8(8)+log8(6).
Since log8(8)=1, we have:
log8(48)=1+log8(6).
Final Answer: 1+log8(6).