Solveeit Logo

Question

Mathematics Question on Exponential and Logarithmic Functions

The sum of all the solutions of the equation (8)2x16(8)x+48=0(8)^{2x} - 16 \cdot (8)^x + 48 = 0is:

A

1+log6(8)1 + \log_6(8)

B

log6(6)\log_6(6)

C

1+log6(6)1 + \log_6(6)

D

log6(4)\log_6(4)

Answer

1+log6(6)1 + \log_6(6)

Explanation

Solution

The given equation is:
(8)2x16(8)x+48=0.(8)^{2x} - 16 \cdot (8)^x + 48 = 0.
Substitute t=(8)xt = (8)^x, which simplifies the equation to:
t216t+48=0.t^2 - 16t + 48 = 0.
Solve the quadratic equation:
t216t+48=0    (t4)(t12)=0.t^2 - 16t + 48 = 0 \implies (t - 4)(t - 12) = 0.
Hence:
t=4ort=12.t = 4 \quad \text{or} \quad t = 12.
Back-substituting t=(8)xt = (8)^x, we get:
(8)x=4    x=log8(4),(8)^x = 4 \implies x = \log_8(4),
(8)x=12    x=log8(12).(8)^x = 12 \implies x = \log_8(12).
The sum of the solutions is:
Sum=log8(4)+log8(12).\text{Sum} = \log_8(4) + \log_8(12).
Using the logarithmic property loga(m)+loga(n)=loga(mn)\log_a(m) + \log_a(n) = \log_a(m \cdot n):
Sum=log8(412)=log8(48).\text{Sum} = \log_8(4 \cdot 12) = \log_8(48).
Express 4848 as 868 \cdot 6:
log8(48)=log8(86)=log8(8)+log8(6).\log_8(48) = \log_8(8 \cdot 6) = \log_8(8) + \log_8(6).
Since log8(8)=1\log_8(8) = 1, we have:
log8(48)=1+log8(6).\log_8(48) = 1 + \log_8(6).
Final Answer: 1+log8(6)1 + \log_8(6).