Solveeit Logo

Question

Mathematics Question on Exponential and Logarithmic Functions

The sum of all the real roots of the equation (e2x4)(6e2x5ex+1)=0(e^{2x} – 4)(6e^{2x} – 5e^x + 1) = 0 is

A

log  e3log\;e^3

B

log  e3–log\;e^3

C

log  e6log\;e^6

D

log  e6–log\;e^6

Answer

log  e3–log\;e^3

Explanation

Solution

Given equation : (e2x4)(6e2x5ex+1)=0(e^{2x} – 4)(6e^{2x} – 5e^x + 1) = 0

e2x4=0  or  6e2x5ex+1=0⇒ e^{2x} – 4 = 0 \;or \;6e^{2x} – 5e^x + 1 = 0

e2x=4  or  6(ex)23ex2ex+1=0⇒ e^{2x} = 4 \;or\; 6(e^x)^2 – 3e^x – 2e^x + 1 = 0

2x=ln4  or(3ex1)(2ex1)=0⇒ 2x = ln4 \;or (3e^x – 1)(2e^x – 1) = 0

x=In2  or  ex=13  or  ex=12⇒ x = In2 \;or\; e^x = \frac{1}{3}\; or\; e^x = \frac{1}{2}

else, x=ln13,ln2x = ln\frac{1}{3}, -ln2

Sum of all real roots = ln2ln3ln2ln2 – ln3 – ln2

= ln3–ln3

Hence, the correct option is (B): log  e3–log\;e^3