Solveeit Logo

Question

Question: The sum of all solutions of the equation \(\cos x.\cos\left( \frac{\pi}{3} + x \right).\cos\left( \...

The sum of all solutions of the equation

cosx.cos(π3+x).cos(π3x)=14,x[0,6π]\cos x.\cos\left( \frac{\pi}{3} + x \right).\cos\left( \frac{\pi}{3} - x \right) = \frac{1}{4},x \in \lbrack 0,6\pi\rbrack is

A

sin(θ/3)=6π\sin(\theta/3) = 6\pi

B

30π30\pi

C

110π3\frac{110\pi}{3}

D

None of these

Answer

30π30\pi

Explanation

Solution

Here, cosx(14cos2x34sin2x)=14\cos x\left( \frac{1}{4}\cos^{2}x - \frac{3}{4}\sin^{2}x \right) = \frac{1}{4} or

cosx4(4cos2x3)=14\frac{\cos x}{4}\left( 4\cos^{2}x - 3 \right) = \frac{1}{4} or cos3x=1\cos 3x = 1

3x=2nπ\Rightarrow 3x = 2n\pi x=2nπ3,\Rightarrow x = \frac{2n\pi}{3}, where n=0,1,2,3,4,5,6,7,8,9n = 0,1,2,3,4,5,6,7,8,9;

\thereforeThe required sum =2π3n=09n= \frac{2\pi}{3}\sum_{n = 0}^{9}n= 30π.