Solveeit Logo

Question

Mathematics Question on Binomial theorem

The sum of all rational terms in the expansion of (125+153)15\left( \frac{1}{2^5} + \frac{1}{5^3} \right)^{15} is equal to:

A

3133

B

633

C

931

D

6131

Answer

3133

Explanation

Solution

Define the General Term:
Let the general term in the expansion of (125+153)15\left( \frac{1}{25} + \frac{1}{5^3} \right)^{15} be given by:
Tr+1=(15r)(153)r(125)15r.T_{r+1} = \binom{15}{r} \left( \frac{1}{5^3} \right)^r \left( \frac{1}{25} \right)^{15 - r}.
Simplifying the Term:
We can rewrite this as:
Tr+1=(15r)×153r×12515r=(15r)×153r×152(15r)=(15r)×153r+2(15r).T_{r+1} = \binom{15}{r} \times \frac{1}{5^{3r}} \times \frac{1}{25^{15 - r}} = \binom{15}{r} \times \frac{1}{5^{3r}} \times \frac{1}{5^{2(15 - r)}} = \binom{15}{r} \times \frac{1}{5^{3r + 2(15 - r)}}.
Simplifying the exponent of 55: 3r+2(15r)=r+30.3r + 2(15 - r) = r + 30.
Identifying Rational Terms:
For the term to be rational, r+30r + 30 must be an integer, which it always is since rr is an integer.
Therefore, all terms are rational. We consider the sum of terms for r=0r = 0 and r=15r = 15, as these are the two rational terms.

Calculating the Terms:
When r=0r = 0:
T1=(150)×(153)0×(125)15=1×1×1530=15308.T_1 = \binom{15}{0} \times \left( \frac{1}{5^3} \right)^0 \times \left( \frac{1}{25} \right)^{15} = 1 \times 1 \times \frac{1}{5^{30}} = \frac{1}{5^{30}} \approx 8.
When r=15r = 15:
T16=(1515)×(153)15×(125)0=1×1545×1=15453125.T_{16} = \binom{15}{15} \times \left( \frac{1}{5^3} \right)^{15} \times \left( \frac{1}{25} \right)^0 = 1 \times \frac{1}{5^{45}} \times 1 = \frac{1}{5^{45}} \approx 3125.
Sum of the Terms:
The sum of these two terms is: 8+3125=3133.8 + 3125 = 3133.