Solveeit Logo

Question

Quantitative Aptitude Question on Number of integer solutions

The sum of all possible values of xx satisfying the equation 24x222x2+x+16+22x+30=02^{4x^2} - 2^{2x^2+x+16} + 2^{2x+30} = 0, is

A

52\frac{5}{2}

B

12\frac{1}{2}

C

3

D

32\frac{3}{2}

Answer

12\frac{1}{2}

Explanation

Solution

Given That,
24x222x2+x+16+22x+30=02^{4x^2} - 2^{2x^2+x+16} + 2^{2x+30} = 0
(22x2)222x2.2x+15.21+(2x+15)2=0⇒ (2^{2x^2})^2-2^{2x^2}.2^{x+15}.2^1+(2^{x+15})^2=0
(22x22x+15)2=0⇒ (2^{2x^2}-2^{x+15})^2=0
22x22x+15=0⇒ 2^{2x^2}-2^{x+15}=0
22x2=2x+15⇒ 2^{2x^2}=2^{x+15}
2x2=x+15⇒ 2x^2=x+15
2x2x15=0⇒ 2x^2-x-15=0
(2x+5)(x3)=0⇒ (2x+5)(x-3)=0
x=52, 3⇒ x=-\frac 52, \ 3
Now, the of possible values = 52+3=12-\frac 52+3 = \frac 12

So, the correct option is (B): 12\frac 12