Question
Mathematics Question on complex numbers
The sum of all possible values of θ∈[−π,2π], for which 1−2icosθ1+icosθ is purely imaginary, is equal to:
A
2π
B
3π
C
5π
D
4π
Answer
3π
Explanation
Solution
Let:
Z=1−2icosθ1+icosθ.
For Z to be purely imaginary:
Z+Z=0,
where Z is the complex conjugate of Z. Thus:
Z+Z=1−2icosθ1+icosθ+1+2icosθ1−icosθ=0.
Simplify:
(1+icosθ)(1−2icosθ)+(1−icosθ)(1+2icosθ)=0.
Expand both terms:
(1+icosθ)(1−2icosθ)=1−2icosθ+icosθ−2cos2θ,
(1−icosθ)(1+2icosθ)=1+2icosθ−icosθ−2cos2θ.
Combine:
(1−2icosθ+icosθ−2cos2θ)+(1+2icosθ−icosθ−2cos2θ)=0.
Simplify further:
2−4cos2θ=0.
Solve for cos2θ:
cos2θ=21.
Step 2: Find all possible values of θ. If cos2θ=21, then:
cosθ=±21.
The possible values of θ∈[−π,π] are:
θ=±4π,±43π.
Step 3: Sum of all possible values
Sum=4π+(−4π)+43π+(−43π)=3π.
Final Answer: 3π.