Solveeit Logo

Question

Mathematics Question on complex numbers

The sum of all possible values of θ[π,2π]\theta \in [-\pi, 2\pi], for which 1+icosθ12icosθ\frac{1 + i \cos\theta}{1 - 2i \cos\theta} is purely imaginary, is equal to:

A

2π2\pi

B

3π3\pi

C

5π5\pi

D

4π4\pi

Answer

3π3\pi

Explanation

Solution

Let:

Z=1+icosθ12icosθ.Z = \frac{1 + i \cos \theta}{1 - 2i \cos \theta}.

For ZZ to be purely imaginary:

Z+Z=0,Z + \overline{Z} = 0,

where Z\overline{Z} is the complex conjugate of ZZ. Thus:

Z+Z=1+icosθ12icosθ+1icosθ1+2icosθ=0.Z + \overline{Z} = \frac{1 + i \cos \theta}{1 - 2i \cos \theta} + \frac{1 - i \cos \theta}{1 + 2i \cos \theta} = 0.

Simplify:

(1+icosθ)(12icosθ)+(1icosθ)(1+2icosθ)=0.(1 + i \cos \theta)(1 - 2i \cos \theta) + (1 - i \cos \theta)(1 + 2i \cos \theta) = 0.

Expand both terms:

(1+icosθ)(12icosθ)=12icosθ+icosθ2cos2θ,(1 + i \cos \theta)(1 - 2i \cos \theta) = 1 - 2i \cos \theta + i \cos \theta - 2 \cos^2 \theta,

(1icosθ)(1+2icosθ)=1+2icosθicosθ2cos2θ.(1 - i \cos \theta)(1 + 2i \cos \theta) = 1 + 2i \cos \theta - i \cos \theta - 2 \cos^2 \theta.

Combine:

(12icosθ+icosθ2cos2θ)+(1+2icosθicosθ2cos2θ)=0.(1 - 2i \cos \theta + i \cos \theta - 2 \cos^2 \theta) + (1 + 2i \cos \theta - i \cos \theta - 2 \cos^2 \theta) = 0.

Simplify further:

24cos2θ=0.2 - 4 \cos^2 \theta = 0.

Solve for cos2θ\cos^2 \theta:

cos2θ=12.\cos^2 \theta = \frac{1}{2}.

Step 2: Find all possible values of θ\theta. If cos2θ=12\cos^2 \theta = \frac{1}{2}, then:

cosθ=±12.\cos \theta = \pm \frac{1}{\sqrt{2}}.

The possible values of θ[π,π]\theta \in [-\pi, \pi] are:

θ=±π4,±3π4.\theta = \pm \frac{\pi}{4}, \pm \frac{3\pi}{4}.

Step 3: Sum of all possible values

Sum=π4+(π4)+3π4+(3π4)=3π.\text{Sum} = \frac{\pi}{4} + \left( -\frac{\pi}{4} \right) + \frac{3\pi}{4} + \left( -\frac{3\pi}{4} \right) = 3\pi.
Final Answer: 3π3\pi.