Solveeit Logo

Question

Question: The sum of all positive divisors of \(960\) is 1) \(3048\) 2) \(3087\) 3) \(3047\) 4) \(2180...

The sum of all positive divisors of 960960 is

  1. 30483048
  2. 30873087
  3. 30473047
  4. 21802180
Explanation

Solution

Hint : First we need to find the prime factorisation of the number. Then to find the sum of the positive divisors, if the prime factorisation is of the form n1l1×n2l2×.....×nmlkn_1^{{l_{_1}}} \times n_2^{{l_2}} \times ..... \times n_m^{{l_k}}, we will use the formula,
S=(1+n1+n12+n13+...+n1l1)×(1+n2+n22+n23+...+n2l2)×...×(1+nm+nm2+nm3+...+nmlk)S = \left( {1 + {n_1} + n_1^2 + n_1^3 + ... + n_1^{{l_1}}} \right) \times \left( {1 + {n_2} + n_2^2 + n_2^3 + ... + n_2^{{l_2}}} \right) \times ... \times \left( {1 + {n_m} + n_m^2 + n_m^3 + ... + n_m^{{l_k}}} \right)
Where, n,l,m,kn,l,m,k are positive integers.
Using this formula we can find the sum of divisors of the given number.

Complete step-by-step answer :
The number is 960960.
Therefore, the prime factorisation of 960960 is 26×3×5{2^6} \times 3 \times 5.
Now, to find the sum of divisors of 960960, we will use the formula,
S=(1+n1+n12+n13+...+n1l1)×(1+n2+n22+n23+...+n2l2)×...×(1+nm+nm2+nm3+...+nmlk)S = \left( {1 + {n_1} + n_1^2 + n_1^3 + ... + n_1^{{l_1}}} \right) \times \left( {1 + {n_2} + n_2^2 + n_2^3 + ... + n_2^{{l_2}}} \right) \times ... \times \left( {1 + {n_m} + n_m^2 + n_m^3 + ... + n_m^{{l_k}}} \right).
Therefore, substituting the values of the prime factorisation of 960960, we get,
S=(1+2+22+...+26)×(1+3)×(1+5)S = \left( {1 + 2 + {2^2} + ... + {2^6}} \right) \times \left( {1 + 3} \right) \times \left( {1 + 5} \right)
Simplifying the calculations, we get,
S=(1+2+22+...+26)×(4)×(6)\Rightarrow S = \left( {1 + 2 + {2^2} + ... + {2^6}} \right) \times \left( 4 \right) \times \left( 6 \right)
Now, we can see that the series present in the bracket (1+2+22+...+26)\left( {1 + 2 + {2^2} + ... + {2^6}} \right) forms a GP.
Therefore, we can find the sum of n terms of a GP using the formula a(rn1)(r1)\dfrac{{a\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}. So, we get,
(1+2+22+...+26)=1(271)21\left( {1 + 2 + {2^2} + ... + {2^6}} \right) = \dfrac{{1\left( {{2^7} - 1} \right)}}{{2 - 1}}
Simplifying the expression,
(1+2+22+...+26)=(271)1\Rightarrow \left( {1 + 2 + {2^2} + ... + {2^6}} \right) = \dfrac{{\left( {{2^7} - 1} \right)}}{1}
(1+2+22+...+26)=271\left( {1 + 2 + {2^2} + ... + {2^6}} \right) = {2^7} - 1
Therefore, we can write SS as,
S=(271)×(4)×(6)\Rightarrow S = \left( {{2^7} - 1} \right) \times \left( 4 \right) \times \left( 6 \right)
Now, putting in the value of 27{2^7} as 128128, we get,
S=(1281)×(4)×(6)\Rightarrow S = \left( {128 - 1} \right) \times \left( 4 \right) \times \left( 6 \right)
Carrying out the calculations, we get the expression as,
S=(127)×24\Rightarrow S = \left( {127} \right) \times 24
S=3048\Rightarrow S = 3048
Therefore, the sum of all positive divisors of 960960 gives us 30483048. Hence, Option (A) is the correct answer.
So, the correct answer is “Option B”.

Note : The formula we used basically in this problem is just a shortened and simpler form of the fact that we are adding all the divisors of 960960 one by one to get the required answer. We must know the formula to find the sum of n terms of a GP in order to solve such a problem. One must be accurate while doing calculations in order to be sure of the final answer.